CRASAR News / Blog

  • Welcome to the blog, where you'll find news, press releases and the Director's Blog.

Vanuatu: How disaster robots have helped in 12 similar events and might help there

I’m here at the UN World Disaster Conference where word of the destruction in Vanuata is coming in and our thoughts and prayers go to out the victims and families. It sounds like the effort is on humanitarian relief.  I’m not seeing any discussion of mitigation/response/recovery of critical infrastructure, which is the historical focus of disaster robotics. Here’s some information on how robots have helped in 12 similar disasters.

Small unmanned aerial systems have been used by rescue authorities in 8 storm or flooding events: Hurricane Katrina, Hurricane Wilma, Typhoon Morakot (Taiwan),  Thailand floods, Typhoon Haiyan (Philippines), Boulder Colorado floods, SR530 mudslide and flood, Serbia floods. UAS are most often used for rapid reconnaissance and mapping of the extent of devastation, condition of transportation routes and what areas are cut off, power lines, and general hydrological and geological mitigation needed to predict, contain, or drain water, etc.

Small marine vehicles have been used by rescue authorities in 3 storm and flooding events: Hurricane Wilma, Hurricane Ike, Tohoku tsunami (Japan).  They are mostly used to identify the state of bridges and ports, debris that is blocking ports or polluting fishing areas, and for the recovery of victims that were washed away into the sea. Plus they were used at the Haiti earthquake to clear underwater debris from the port to allow humanitarian relief supplies to be shipped in (it’s hard to feed a country via planes into a single airport). In Japan, the use of marine vehicles by the IRS-CRASAR team was credited for re-opening the Minamisaniruku new port 6 months earlier than would have been possible with manual divers and in time for the key salmon fishing season.

Unmanned ground robots are almost never used because commercial buildings rarely collapse in these conditions, it is mostly individual homes.

Tohoku earthquake anniversity and UN World Conference on Disaster Risk Reduction

wcdrr-logo-desktop-v3.0It is the 4th anniversary of the Tohoku earthquake and I am en route to Sendai where the United Nations World Conference on Disaster Risk Reduction. It is sobering to think that over 18,000 people died and that the great nation of Japan is still recovering.  It makes it even more appropriate for Japan to host the conference and at Sendai. I look forward to seeing my colleagues from the International Rescue Systems Institute who we worked side-by-side with unmanned marine vehicles.

I will be giving an invited talk on the current state and achievement of  disaster robotics during the Public Forum. In looking back between 2011 and now, the biggest surprise is that unmanned marine vehicles are not being used as much as I would have thought. The tsunami response and recovery showed the efficacy of these tools and how the can do in 4 hours what it take divers weeks to do (if they are available). There’s no surprise in that unmanned systems are being used more frequently! I’ll post the my findings when I give my talk– no spoilers!

Pleurobot is salamander-like robot with lifelike motion

A video showing “multimodal locomotion in a bioinspired robot” has been making the rounds, and the video demonstrates advances in robotics as scientific tools as well as potential robots for search and rescue operations. Its name is Pleurobot.

According to the video notes, the Pleurobot is being developed by the BioRob at EPFL and NCCR Robotics. The robot takes it cues from the salamander and the team is making use of cineradiography to advance their work. They recorded three-dimensional X-ray videos of salamanders, walking on ground, walking underwater and swimming. Tracking up to 64 points on the animal’s skeleton, they were able to record three-dimensional movements of bones in great detail. They deduced the number and position of active and passive joints needed for the robot to reproduce the movements with reasonable accuracy in three-dimensions.

Commenting on their work, Evan Ackerman in IEEE Spectrum said, “The key to Pleurobot’s lifelike motion is its design, which was based on 3D x-ray movies of a real salamander walking and swimming.”

Their main goal is understanding the way that the nervous system coordinates movement in vertebrates. “Pleurobot’s design, with 27 degrees of freedom, allows us to test more advanced mathematical models of the locomotor nervous system towards richer motor skills,” they said. The team said Pleurobot may also prove useful in other ways. “Because of its low center of mass and segmented legs it can navigate over rough terrain without losing balance. With a waterproof skin it can also swim. Those features may one day enable Pleurobot to help in search and rescue operations.”

Check out more information at

AAAI-15 Exhibition Interviews

TEES Center for Robot-Assisted Search and Rescue (CRASAR) students Brittany Duncan, a NSF Graduate Fellow, Jesus Suarez, a NSF Bridge to the Doctorate Fellow, and Grant Wilde exhibited different rescue robots at the AAAI-15 exhibition. The students and director, Robin Murphy, were featured in interviews by Austin affiliate KVUE and Houston KHOU.

Thoughts on what the proposed FAA SUAS rules mean for search and rescue

by Brittan Duncan with Robin Murphy

Here are our notes on the recommended rules, which are currently open for public comment and are not in force, and how they might impact public agencies, especially fire rescue.  Current operations should still be run under the existing COA process for public agencies. Also, even though the rules are open for public comments for 60 days, that doesn’t mean the rules will be made official in 60 days or that these will indeed be the final rules.

In the future, COAs may not be necessary for flight, as the rules would let agencies pick and choose whether to fly as a civil operation or as a public entity.

If you are flying in Class G and under 500 feet AGL with a registered vehicle less than 55 pounds and a top speed of less than 100mph with a pilot who has passed the proposed UAS ground school (“aeronautical knowledge test”), you won’t need a COA. You will still have to comply with NOTAMs, TFRs, see-and-avoid rules, and rules for flying over people. Note: you will also need to consider any local regulations on privacy, etc. Remember, just because the FAA says you can fly without a COA in an area, it doesn’t mean your constituency finds it acceptable.

If you are flying in other classes of airspace, you have work with the local ATC. Exactly how this happens is unclear and we suspect that in practice many ATCs will say “get a COA” and in some of those cases, you may still have to have to pilot with a civilian pilot’s license. Hopefully not, but that’s still unclear. It would be the worst case scenario, though, which is manageable.  This gives more flexibility for emergency situations where you need to fly in a tower controlled area but hadn’t made prior arrangements with the ATC- they can say “ok, you can fly this one time but let’s work out a better plan after the emergency is over.” Of course, the ATC can also say “no.”

You can fly over people who are covered, such as those in their houses in a neighborhood or in their cars in traffic, but you are responsible for mitigation, as in: your agency is liable.  You would be allowed to fly over uncovered people only if they  are directly participating in the operation (like other fire fighters and police) and have received a briefing. However, as a public agency, that may not be realistic except during training or highly localized flights during an incident where the site was cordoned off. Fortunately, it looks like agencies will have some discretion in how they alert civilians. Informing residents that you are flying in their area to search for a person, asking people to stay indoors temporarily, posting signage, etc., may be sufficient. Your agency probably already has SOP for various activities and those can be expanded to handle SUAS.  Note that even if your agency feels it is acting within its bounds, SUAS make some people very antsy and thus anything you can do to proactively reduce misperceptions will probably benefit your agency in the long run.

You still have to maintain line of sight.  Still no looking through binoculars or cameras. This applies to both the operator and the visual observer, who must both be able to see the vehicle at any time and should be able to tell which direction it is facing, as well as direction of flight.

You can have a mobile operation with a visual observer on a moving boat, but not a moving car.   This is great news for agencies who want to map rivers or wetlands, “meh” for everyone else.

You can have multiple UAS in the same airspace, but each requires their own pilot and visual observer. We are looking forward to this as we see a need in wilderness search and rescue for a fixed-wing to conduct a thorough survey at a higher altitude while a rotor-craft is directed to the high probability spots for a missing person.

You can eliminate the separate visual observer if the pilot flies “heads up” and always keeps eyes on the UAS. Note: This is only allowed for flights in which you are not using any first person view- you can’t “fly the camera” as the pilot without a visual observer. Our studies with SUAS and decades of studies in manned aviation suggest a single person switching between first person view and external views can lead to errors, so although it adds manpower (sigh) we agree with this.

When you want to use first person view, in conjunction with a visual observer, the visual observer is not allowed to manipulate any flight controls, look through the camera to pan/tilt/zoom in on an object, or initiate any autonomy (e.g., select waypoints). Your mission specialist (for us, there’s usually a responder saying “no, this is what I want to look at”) can’t be your visual observer. This is important to note in systems that require multiple interfaces, such as a hand controller and a computer.  Another option is to fund our research in multi-modal user interfaces that don’t overwhelm the pilot and don’t require them to look at a screen!

You have to have 5 minutes of reserve power to insure a return to home and controlled landing. Note: in practice, you also want to keep track of the distance to home/time to home. We think the real point is always being able to return home unless there is a catastrophic failure of the SUAS.  5 minutes may be excessive for small areas where the SUAS can return safely in less than 2 minutes, but no one has ever been sad to have too much fuel.

You can’t fly at night. It looks like you will have to go through the COA process for this.  The SUAS rules document actually says “The FAA welcomes public comments with suggestions on how to effectively mitigate the risk of operations of small unmanned aircraft during low-light or nighttime operations.”  Which sounds like “if you’ve got any ideas, let us know, because we didn’t come up with anything that could be a hard and fast rule.”

FAA Small UAS rules: impact unclear on emergency response agencies

Yesterday the FAA released their proposed rules for small UAS. The summary focuses on the impact on commercial industry with the implication that emergency response agencies will continue to have to function under the “old” rules of applying for COAs even for class G space. I will be reading through the entire document (it’s 159 pages) in the next couple of days to see what the real impact is.

Robot firefighter puts out its first blaze

In Mobile, Alabama, a humanoid robot looked on as a fire burned aboard the USS Shadwell. Its infrared eyes scanned the blaze to find its heart, and its robot arms grabbed a hose to spray water into the inferno.

This was the first live test for SAFFiR – the Shipboard Autonomous Firefighting Robot – and the first time a robot has ever fought a fire. Developed by roboticists at Virginia Polytechnic Institute and State University (Virginia Tech) in Blackburg for the US Navy, SAFFiR is intended to be part of the firefighting equipment of the future on board every Navy ship, tackling fires without risking human life.

The robot, which weighs 63 kilograms and stands 178 centimetres tall, uses dual cameras to help it see and move around, laser sensors to provide the exact distances between objects and thermal cameras to help it find fires. Although SAFFiR can operate autonomously and is able to walk and grab a hose on its own, the current version takes all other instructions from a human operator.

Check out more information at

Mexico City hospital collapse…

A building collapse is almost always terrible, a building collapse of a maternity ward is unthinkable. All of us send our thoughts and prayers to the families of this horrible event.

Although there is no news about any robots being used, robots were first used in disasters for commercial multi-story building collapses– notably the 9/11 World Trade Center. Commercial multi-story buildings present unique challenges for searching because the concrete floors can be densely pancaked in some areas with just inches of space and leave survivable voids in others.

Small robots like the shoe-boxed sized micro VGTV and micro Tracks by Inkutun were used the most at the WTC because they could go into the rubble where a person or dog could not fit and could go further than a camera on a wand. That is still the case, with small robots being used to go between tightly packed layers of rubble at the Berkman Plaza II collapse in Jacksonville (2007) and the Prospect Towers collapse in New Jersey (2010).

Bigger robots such as the IED robots like iRobot Packbot and QinetiQ Talon are often too big for the size of voids in the rubble of a pancake collapse. Really large, “maxi” robots such as the REMOTEC series are not only too big, but the weight poses a problem- as in they are so heavy they could cause a secondary collapse.

If anyone knows of other multi-story building collapses where robots were used, please let me know and a reference and I’ll send a CRASAR patch.

In the meantime, our thoughts and prayers to the families in Mexico…

Emergency Management Magazine…

There’s nothing like appearing on the home page of Emergency Management Magazine to trigger a “holy cow, I haven’t been keeping up the blog!” It’s been hugely busy here between working with students colleagues, and industry partners on

  • creating use cases for robots for Ebola and other infectious diseases with a grant from the National Science Foundation (Eric Rasmussen, MD FACP,  and our medical director for Roboticists Without Borders is the co-PI),
  • prepping UAVs for an upcoming wilderness search and rescue exercise with Brazos Valley Search and Rescue (big shout out to the FAA and CSA for their help!),
  • prepping for the Robot Petting Zoo we are doing with the Field Innovation Team at SXSW to show off real robots used in real disasters,
  • getting to work with Prof. Howie Choset at CMU and Prof. Dan Goldman at Georgia Tech on burrowing robots through a National Robotics Initiative grant from NSF, and
  • teaching an class overload (add case studies of robots at disasters to undergrad robotics as part of my Faculty Fellow for Innovation in teaching award, plus the AggiE Challenge advised by Profs. Dylan Shell, Craig Marianno, and myself on creating ground and water robots to detect radiation )

So things are happening!  Thank you for your donations that make it possible to bring robots to new venues such as wilderness search and rescue and public education events like the Robot Petting Zoo. Most of what we do is based on donations, so please donate here!


15 Things Robot Designers Can Learn From Cats

Humans have long admired the ability of cats to always land on their feet — known as the cat righting reflex. The flexible bodies of our feline friends allow them to twist as they fall. It’s no wonder then, that researchers at Georgia Tech are studying the way cats flex and turn in the air – so they can apply what they learn in designing robots that can land without sustaining damage. The applications are numerous!

Check out more information and check out 15 other cat qualities scientists could study to make better robots (as told by Susan C. Willett) at