CRASAR News / Blog

  • Welcome to the CRASAR.org blog, where you'll find news, press releases and the Director's Blog.

Robots and Ebola

I’ve been working since Sept 17 on robots for the Ebola epidemic– both in terms of what can be used now and what can be used for future epidemics. Dr. Taskin Padir at WPI deserves a big shout out for calling the robotics community’s attention to this, with Gill Pratt at DARPA and head of the DARPA Robotics Challenge and Richard Voyles Associate Dean at Purdue and liaison for the National Robotics Initiative coordinating efforts at the federal level.
I am pleased to announce that CRASAR will be co-hosting a White House Office of Science and Technology Policy workshop on Safety Robotics for Ebola Workers on Nov. 7. Texas A&M was already planning a medical response workshop on the 7th for disasters in general, so expanding that to a virtual event over the internet with sessions at the White House (Richard), Boston (Taskin), and Berkeley (Ken Goldberg).  CRASAR is already planning to host another workshop to share the results of our current research into specific use cases with the robotics community in the Jan 3-15, 2015, timeframe.
Here on campus, students will be creating prototypes as part of the Aggies Invent event What Would You Build for a First Responder event on Oct. 24-27 and the students in my graduate AI Robotics class this semester will be designing and simulating intelligent robots.
The real issue to me is what are the real needs that robots can play in such a complex event? Here are some possibilities that have emerged in discussions and I am sure that there are many more (let me know what you think!):
  • Mortuary robots to respectfully transport the deceased, as ebola is most virulent at the time of death and immediately following death
  • Reducing the number of health professionals within the biosafety labs and field hospitals (e.g., automated materials handling, tele robotics patient care)
  • Detection of contamination (e.g., does this hospital room, ambulance or house have ebola)
  • Disinfection (e.g., robots that can open the drawers and doors for the commercially available “little Moe” disinfectant robot)
  • Telepresence robots for experts to consult/advise on medical issues, train and supervise worker decontamination to catch accidental self-contamination, and serve as “rolling interpreters” for the different languages and dialects
  • Physical security for the workers (e.g., the food riots in Sierre Leone)
  • Waste handling (e.g., where are all the biowaste from patients and worker suits going and how is it getting there?)
  • Humanitarian relief (e.g., autonomous food trucks, UAVs that can drop off food, water, medicine, but also “regular” medicine for diabetes, etc., for people who are healthy but cut off)
  • Reconnaissance (e.g., what’s happening in this village? Any signs of illness? Are people fleeing?)
In order to be successful at any one of the tasks, robots have to meet a lot of hidden requirements and sometimes the least exciting or glamorous job can be of the most help to the workers. Example hidden requirements: Can an isolated field hospital handle a heavy robot in the muddy rainy season? How will the robots be transported there? Is it easy enough for the locals to use so that they can be engaged and earn a living wage? What kind of network communication is available? What if it needs repairs? That’s what I am working on, applying the lessons learned in robotics for meteorological and geological disasters.
I am certainly not working alone and am reaching out to experts all over the world. In particular, four groups have immediately risen to the challenge and are helping.  Matt Minson MD and head of Texas Task Force 1′s medical team and Eric Rasmussen MD FACP (a retired Navy doctor) who has served as the medical director for the Center for Robot-Assisted Search and Rescue since 9/11 have offered their unique insights. There are two DoD groups:  the USMC Chemical Biological Incident Response Force (the team that cleaned up the anthrax in DC) with whom I’ve served on their technical advisory board and the Army Telemedicine & Advanced Technologies Research Center (TATRC), where Gary Gilbert MD has led highly innovative work in telemedicine and in casualty evacuation (Matt and I had a grant evaluating robotic concepts).

Snake Robots: Slithering Machines Could Help Search & Rescue Missions

Meet the sidewinder rattlesnake robot! This motorized serpent can actually move across sandy surfaces, both flat and inclined, an exploit that has escaped engineers so far.

Recently, the team of Georgia tech researchers has portrayed for the first time how sidewinder rattlesnakes also known as Crotalus Cerastes, move across a challenging sandy mound. The study is published in the ‘Science’ journal.

“We observed snakes on an artificial mound, finding that the snakes often flatten themselves on the steeper slopes to increase their contact with the sand,” researchers stated. Dr. Daniel Goldman, senior author, who runs a biomechanics lab at the Georgia Institute of Technology, told BBC, “The most striking thing for us was how nice these animals are as subjects, they lean to just sidewind on command.”

Check out more information at capitalwired.com

These Rubbery Robots Use Explosions to Jump

Scientists recently demonstrated that a soft robot could crawl like a starfish through fire, over snow, and even after being run over by a car, all without the constraints of a tether. To control the bot, scientists used air pumps that force bursts of air in and out of a series of pneumatic channels running through its limbs.

Air compressors are rather slow, taking on the order of seconds to work. So, rather than rely on compressed air, scientists have investigated the idea of using explosions to propel rubbery bots. Roboticist Michael Tolley at Harvard University and his colleagues now have revealed an untethered soft robot that uses internal combustion to jump. “I think this type of system might be useful for navigating rough terrain or unknown environments for things like search-and-rescue, or even space exploration,” Tolley says.

The three-legged silicone robot stands about 3 inches tall, 12 inches wide, and weighs a little more than a pound. It has an air pump that bends its legs to control the direction of its jumps and an explosion-driven piston in its center that propels it upward. Its round center holds the 9-volt battery for the air pump, liquid butane fuel for the piston, and electronics to provide the sparks for the explosions.

Tolley’s bot can jump nearly 2 feet horizontally or vertically. That leaping ability could allow it to cross uneven, expanding its range across uneven terrain and making the bot more useful for search-and-rescue operations. The device’s squishiness makes it easier for it to land. And the use of butane fuel delivers power and flexibility.

Check out more information at popularmechanics.com

2014 China Robot Contest to Kick off in October

Starting October 10, the 2014 China Robot Contest and RoboCup Open will be taking place in Hefei, capital of East China’s Anhui province, the local government said at a press conference on Monday.

As of September 29, 2,920 competitors from 185 colleges including Tsinghua University and Peking University have registered for the contest, according to the municipal bureau of science and technology.

The annual event is seen as the most recognized and authoritative competition for robots in China. In its 15th year, it is slated to be held in Anhui International Exhibition Center from October 10 to October 12.

For more information, check out english.anhuinews.com

COA Day Oct 21st: Helping Agencies Learn About and Write COAs

On Oct 21st, CRASAR will have the first “COA Day”– a free one day hands-on workshop for agencies to help them with the COA process. CRASAR has over 20 COAs and an emergency COA for fixed and rotor craft UAS. We’ve been helping agencies on a case by case basis with the process, which has been a drain on Brittany Duncan (our fantastic graduate student and pilot in command who does the real work)– so we decided to do this as a batch process.

Contact kimberly@cse.tamu.edu for the complete flyer (which we will post soon) and the agenda. Here’s a short version:

Objectives: The purpose of this workshop is to guide fire rescue, law enforcement, and other agencies through the FAA certificate of authorization (COA) and emergency COA process needed to fly small unmanned aerial systems (SUAS).

By the end of the day, participants will:

  • Complete a COA for their system (or for a mock system) for flying in their jurisdiction
  • Become familiar with SUAS, how they have been used, hidden costs such as manpower, maintenance, and training, and issues such as privacy

Organization: The workshop sections will generally be organized as short 10-20 minute lectures by representatives from the FAA Central Service Center and CRASAR, followed by exercises where responders will work on their COAs or on mock COAs. Participants will have pre-workshop homework so that they will have the basic information for a COA on hand. Responders can ask questions and get help either in person or through chat. The preferred form of participation is to come to College Station but there will be a concurrent webinar.  Each participant who completes the workshop will receive a certificate of completion.

Free registration: Contact Kimberly@cse.tamu.edu or (979) 845-8737 by Oct. 8 for the registration materials so that we can make sure we have enough space and enough seats for the webinar.  However, we will accept on-site/day-of registration.

Who should attend: The workshop is for public agencies only, industry is not permitted at this event (we will be happy to hold a separate event through the Lone Star UASC).  No experience with SUAS or flying is required, the purpose is to serve as a complete introduction to SUAS for homeland security professionals. If you do not have a specific SUAS you are considering, we will have spec sheets on representative SUAS from CRASAR’s Roboticists Without Borders members.

 

NASA tech finds disaster survivors

Each time your heart beats, your entire body moves — even if you’re unconscious and pinned under a pile of rubble. The vibrations are small, invisible to the human eye, and might just save your life after a major disaster.

Researchers at NASA have developed a device that picks up these subtle movements through up to 40 feet of debris. Called FINDER (Finding Individuals for Disaster and Emergency Response), the tool was developed at NASA’s Jet Propulsion Laboratory to help rescue crews find survivors quickly in a major disaster.

After a disaster, there’s a limited window of time to find trapped survivors. FINDER makes the process more efficient. It uses a low power radio signal to detect motion. Each movement caused by a heartbeat is like a “twinkle” reflecting back to the radar. What makes the system especially smart is software that can cut through all other movements and pinpoint which vibrations are signs of life. The system looks just for the signals that match human heartbeats, filtering out slower movements like tree branches in the wind, and faster ones like the heartbeat of a rat.

It takes about five minutes to learn how to use FINDER and just a few minutes to set up. The device fits into a case small enough to carry on a plane. Hit the “Search” button and 30 seconds later a Web page appears on the FINDER laptop, which shows how many heartbeats it’s found in a 100 foot radius.

Check out more information at cnn.com

This squishy tentacle robot may haunt your dreams, but it could also help you in a disaster

A new robot built at MIT’s Computer Science and Artificial Intelligence Lab is rubbery and wriggly, and built to squirm around tight corners.

The creation is meant to be an arm for what are known as soft robots — machines that use compressed air to move their soft body parts, making them safe to be around humans and capable of feats with which hard robots might struggle. It’s inspired by octopus tentacles and moves by puffing up different segments of its body.

Unlike many other soft robots, the tentacle really is made of 100 percent soft material — silicone rubber.

Check out more information at gigaom.com

9/11: Thoughts on the Anniversary of the WTC Disaster and First Use of Robots

I am spending the anniversary of 9/11 at the World Bank Headquarters at the World Reconstruction Conference. I was invited to give a talk on how disaster robots can be used for the recovery phase of disasters (as opposed to the search and rescue/response phase). In many ways, it was the kind of talk I had expected to give on the 13th anniversary of the first use of robots for a disaster.  I was able to proudly show  that land, sea, and aerial robots are already being used for recovery efforts. For example, the joint IRS-CRASAR team that fielded marine robots to the 2011 Japanese tsunami helped with the recovery of the region, re-opening the Minami-sanriku fishing port and finding polluting debris in the aquaculture. The decommissioning of the Fukushima Daiichi nuclear power plant is likely to go on for decades and robots are essential to the safe and cost-effective work.

But it was also the kind of talk that I hadn’t expected to give because 13 years after the successful use of ground robots, 10 years after marine vehicles, and 9 years after small aerial vehicles, robots still are not routinized into disasters! The responders don’t have them and as best I can tell in 36 disasters where robots have been reported to be used, the robots were borrowed in 35 cases- the agency that needed them didn’t have them.

The past 13 years have continued to show the potential, I believe the next 3 will be where we see the rapid adoption of disaster robotics.

Our respects to the victims, their families, and the responders and my thanks to the great team that John Blitch pulled together for CRASAR’s and the world’s first use of robots.

Now, shape-changing ‘squishy’ robots that tread over extreme conditions for rescue ops

Engineers have created a shape-changing “soft” robot that can tread over a variety of adverse environmental conditions including snow, puddles of water, flames, making them useful in search and rescue operations.

Check out more information at zee news.india.com

Unmanned Magazine

Check out this website unmannedmagazine.com

Published bi monthly, UNMANNED magazine has a reach to more than 20 countries with more than 15000 readership both in print and digital media across the world. UNMANNED magazine delivers essential, in-depth and up-to-date coverage of unmanned technology developments, events, gadgets, profiles, interviews with top management and senior officers, unmannedpreneurs, news and civil/commercial market opportunities.