Welcome to the Center for Robot-Assisted Search and Rescue (CRASAR) at Texas A&M University

CRASAR is a Texas A&M Engineering Experiment Station Center whose mission is to improve disaster preparedness, prevention, response, and recovery through the development and adoption of robots and related technologies. Its goal is to create a “community of practice” throughout the world for rescue robots that motivates fundamental research, supports technology transfer, and educates students, response professionals, and the public. CRASAR is a dynamic mix of university researchers, industry, and responders.

CRASAR has participated in 15 of the 35 documented deployments of disaster robots throughout the world and have formally analyzed 9 others, providing a comprehensive archive of rescue robots in practice. Our industry partners and funding agencies make a wide range of small land, sea, and air robots available for use by responders at no charge through the Roboticists Without Borders program. Our human-robot crew organization and protocols developed first for UGVs, where studies show a 9 times increase in team performance, and then extended for small UAVs during our flights at Hurricane Katrina has been adopted by Italian and German UAV response teams and was used by the Westinghouse team for the use of the Honeywell T-Hawk at the Fukushima nuclear accident.

CRASAR helps organize and sponsor conferences such as the annual IEEE Safety Security Rescue Robotics conference and workshops such as the recent NSF-JST-NIST Workshop on Rescue Robots.

A good overview of rescue robotics is in Disaster Robotics by Robin Murphy (MIT Press, Amazon, and Kindle) and  Chapter 50 of the award-winning Handbook of Robotics. Here’s a list of all known robot deployments: Table of Responses.

Fun facts from “Disaster Robots”:

- All ground, aerial, and marine robots have been teleoperated (like the Mars Rovers) rather than fully autonomous (like a Roomba), primarily because the robots allow the responders to look and act in real-time; there’s always something they need to see or do immediately

- Robots have been at at least 35 events, and actually used at at least 29 (sometimes the robot is too big or not intrinsically safe)

- The biggest technical barrier is the human-robot interaction. Over 50% of the failures (a total of 27 at 13 incidents) have been human error.

- Robots are not used until an average of 6.5 days after a disaster; either an agency has a robot and they use it within 0.5 days or they don’t and it takes 7.5 days to realize a robot would be of use and get it on site

Click here for more information about CRASAR and its activities.

Donate online to CRASAR to support deployments of Roboticists Without Borders!

Recent News From Our Blog

Vanuatu: How disaster robots have helped in 12 similar events and might help there

I’m here at the UN World Disaster Conference where word of the destruction in Vanuata is coming in and our thoughts and prayers go to out the victims and families. It sounds like the effort is on humanitarian relief.  I’m not seeing any discussion of mitigation/response/recovery of critical infrastructure, which is the historical focus of disaster robotics. Here’s some information on how robots have helped in 12 similar disasters.

Small unmanned aerial systems have been used by rescue authorities in 8 storm or flooding events: Hurricane Katrina, Hurricane Wilma, Typhoon Morakot (Taiwan),  Thailand floods, Typhoon Haiyan (Philippines), Boulder Colorado floods, SR530 mudslide and flood, Serbia floods. UAS are most often used for rapid reconnaissance and mapping of the extent of devastation, condition of transportation routes and what areas are cut off, power lines, and general hydrological and geological mitigation needed to predict, contain, or drain water, etc.

Small marine vehicles have been used by rescue authorities in 3 storm and flooding events: Hurricane Wilma, Hurricane Ike, Tohoku tsunami (Japan).  They are mostly used to identify the state of bridges and ports, debris that is blocking ports or polluting fishing areas, and for the recovery of victims that were washed away into the sea. Plus they were used at the Haiti earthquake to clear underwater debris from the port to allow humanitarian relief supplies to be shipped in (it’s hard to feed a country via planes into a single airport). In Japan, the use of marine vehicles by the IRS-CRASAR team was credited for re-opening the Minamisaniruku new port 6 months earlier than would have been possible with manual divers and in time for the key salmon fishing season.

Unmanned ground robots are almost never used because commercial buildings rarely collapse in these conditions, it is mostly individual homes.

More entries from our blog
Subscribe to our RSS Feed