Welcome to the Center for Robot-Assisted Search and Rescue (CRASAR) at Texas A&M University


CRASAR is a Texas A&M Engineering Experiment Station Center whose mission is to improve disaster preparedness, prevention, response, and recovery through the development and adoption of robots and related technologies. Its goal is to create a “community of practice” throughout the world for rescue robots that motivates fundamental research, supports technology transfer, and educates students, response professionals, and the public. CRASAR is a dynamic mix of university researchers, industry, and responders.

CRASAR has participated in 15 of the 35 documented deployments of disaster robots throughout the world and have formally analyzed 9 others, providing a comprehensive archive of rescue robots in practice. Our industry partners and funding agencies make a wide range of small land, sea, and air robots available for use by responders at no charge through the Roboticists Without Borders program. Our human-robot crew organization and protocols developed first for UGVs, where studies show a 9 times increase in team performance, and then extended for small UAVs during our flights at Hurricane Katrina has been adopted by Italian and German UAV response teams and was used by the Westinghouse team for the use of the Honeywell T-Hawk at the Fukushima nuclear accident.

CRASAR helps organize and sponsor conferences such as the annual IEEE Safety Security Rescue Robotics conference and workshops such as the recent NSF-JST-NIST Workshop on Rescue Robots.

Resources Including Guides and Best Practices for Small UAVs at Disasters

A good overview of rescue robotics is in Disaster Robotics by Robin Murphy (MIT Press, Amazon, and Kindle)- Disaster Robotics is for both practitioners and researchers. It covers 34 deployments worldwide from 2001 through 2013, describes the missions, and next discusses the specific applications and lessons learned for ground (Chapter 3), aerial (Chapter 4), and marine (Chapter 5) vehicles, and then ends with recommendations on how to conduct deployments and field work (Chapter 6). Disaster Robotics won the 2014 PROSE honorable mention for best engineering and science writing.

Here are helpful 1 page guides and best practices for small unmanned aerial systems that have been incorporated into United Nations humanitarian standards and are continuing to evolve:

Click here for more information about CRASAR and its activities.

Donate online to CRASAR to support deployments of Roboticists Without Borders!

Recent News From Our Blog

CRASAR small UAS Assisted Fort Bend OEM with Determining Flooding

YouTube Preview ImageTexas A&M, US Datawing, USAA, Donan, and CartoFusion Technologies
donated manned and unmanned aerial system flights and advanced  visualization for the Fort Bend Office of Emergency Management on April 20 and 24, 2016. The flights and expertise were donated to the county as part of the Texas A&M Engineering Experiment Station Center for Robot-Assisted Search and Rescue’s Roboticists Without Borders program. The program facilitates companies and researchers to collaborating with emergency professionals. This was the third flooding event that CRASAR has flown small UAS at in the past year and the 23rd response since the 2001 World Trade Center disaster.

The team flew two different small UAS for a total of 10 flights covering approximately 1,000 acres in six different areas of Fort Bend county that were inaccessible. “We had some areas that had never flooded before and we needed to see why they were flooding,” said Adam Wright, project coordinator for Fort Bend County drainage, “there were other areas that have flooded in the past that we needed a better visual on to determine the the cause or extent.”

In addition, US Datawing, a San Antonio aerial analytics company, USAA, the insurance and financial services company, and Donan, a national forensic engineering consulting firm based in Kentucky, shared the costs of manned aircraft to fly Bessie Creek and Barker Reservoir. “We think of small UAS as one tier on a pyramid of aerial imagery assets that go from UAS to manned aircraft to satellites,” said Justin Adams from US Datawing and CRASAR’s lead pilot. “Fort Bend and the surrounding counties needed this bigger picture of the flood.” The manned flights also provide a baseline of high resolution imagery to compare with the data from small UAS, which effectively can cover only about 0.5 miles under current FAA rules. The 10 flights were completed in  just over 2 hours of flight time.

“The CRASAR partnership offered us the ability to access tools that were beyond our capabilities in-house at this point, utilizing the advanced image processing, equipment, and technology.” said Lach Mullen, a planner with Fort Bend County OEM.

“The point isn’t to use small UAS for everything but rather to get the right information to the right people,” added Dr. Robin Murphy, director of CRASAR. “We continue to learn about when to use small UAS versus manned aircraft and how to quickly prioritize and process the imagery- which is essential because the flights generated nearly half a terabyte of data.”

As part of the push to get the right data to the county, Cartofusion supplied SituMap, a software package that allowed easy overlaying of UAS imagery onto maps so that officials could quickly identify the location and extent of flood damage. It also showed where each image was taken. County drainage experts could scroll through the over 5,000 images collected by the UAS and manned aircraft, click on an image, and the location it was taken would appear on the map. Cartofusion is a start-up company spun out of Texas A&M University Corpus Christi. The development of SituMap has been shaped in part by the experiences of previous deployments with CRASAR, including the 2011 Japanese tsunami.

CRASAR also fielded the EMILY robot boat used in swift water rescue and evaluated whether it would be useful for reaching flooded areas in dense tree cover that would block the view from a UAS or manned aircraft. EMILY was developed by Hydronalix, another Roboticists Without Borders member, and deployed to assist with lifeguarding the influx of Syrian refugees on rickety boats into Greece.

More entries from our blog
Subscribe to our RSS Feed