Welcome to the Center for Robot-Assisted Search and Rescue (CRASAR) at Texas A&M University

CRASAR is a Texas A&M Engineering Experiment Station Center whose mission is to improve disaster preparedness, prevention, response, and recovery through the development and adoption of robots and related technologies. Its goal is to create a “community of practice” throughout the world for rescue robots that motivates fundamental research, supports technology transfer, and educates students, response professionals, and the public. CRASAR is a dynamic mix of university researchers, industry, and responders.

CRASAR has participated in 15 of the 35 documented deployments of disaster robots throughout the world and have formally analyzed 9 others, providing a comprehensive archive of rescue robots in practice. Our industry partners and funding agencies make a wide range of small land, sea, and air robots available for use by responders at no charge through the Roboticists Without Borders program. Our human-robot crew organization and protocols developed first for UGVs, where studies show a 9 times increase in team performance, and then extended for small UAVs during our flights at Hurricane Katrina has been adopted by Italian and German UAV response teams and was used by the Westinghouse team for the use of the Honeywell T-Hawk at the Fukushima nuclear accident.

CRASAR helps organize and sponsor conferences such as the annual IEEE Safety Security Rescue Robotics conference and workshops such as the recent NSF-JST-NIST Workshop on Rescue Robots.

A good overview of rescue robotics is in Disaster Robotics by Robin Murphy (MIT Press, Amazon, and Kindle) and  Chapter 50 of the award-winning Handbook of Robotics. Here’s a list of all known robot deployments: Table of Responses.

Fun facts from “Disaster Robots”:

- All ground, aerial, and marine robots have been teleoperated (like the Mars Rovers) rather than fully autonomous (like a Roomba), primarily because the robots allow the responders to look and act in real-time; there’s always something they need to see or do immediately

- Robots have been at at least 35 events, and actually used at at least 29 (sometimes the robot is too big or not intrinsically safe)

- The biggest technical barrier is the human-robot interaction. Over 50% of the failures (a total of 27 at 13 incidents) have been human error.

- Robots are not used until an average of 6.5 days after a disaster; either an agency has a robot and they use it within 0.5 days or they don’t and it takes 7.5 days to realize a robot would be of use and get it on site

Click here for more information about CRASAR and its activities.

Donate online to CRASAR to support deployments of Roboticists Without Borders!

Recent News From Our Blog

Robots and Ebola

I’ve been working since Sept 17 on robots for the Ebola epidemic– both in terms of what can be used now and what can be used for future epidemics. Dr. Taskin Padir at WPI deserves a big shout out for calling the robotics community’s attention to this, with Gill Pratt at DARPA and head of the DARPA Robotics Challenge and Richard Voyles Associate Dean at Purdue.
I am pleased to announce that CRASAR will be co-hosting a White House Office of Science and Technology Policy workshop on Safety Robotics for Ebola Workers on Nov. 7. Texas A&M was already planning a medical response workshop on the 7th for disasters in general, so expanding that to a virtual event over the internet with sessions at the White House (OSTP and DARPA), Boston (Taskin), and Berkeley (Ken Goldberg).  CRASAR is already planning to host another workshop to share the results of our current research into specific use cases with the robotics community in the Jan 3-15, 2015, timeframe.
Here on campus, students will be creating prototypes as part of the Aggies Invent event What Would You Build for a First Responder event on Oct. 24-27 and the students in my graduate AI Robotics class this semester will be designing and simulating intelligent robots.
The real issue to me is what are the real needs that robots can play in such a complex event? Here are some possibilities that have emerged in discussions and I am sure that there are many more (let me know what you think!):
  • Mortuary robots to respectfully transport the deceased, as ebola is most virulent at the time of death and immediately following death
  • Reducing the number of health professionals within the biosafety labs and field hospitals (e.g., automated materials handling, tele robotics patient care)
  • Detection of contamination (e.g., does this hospital room, ambulance or house have ebola)
  • Disinfection (e.g., robots that can open the drawers and doors for the commercially available “little Moe” disinfectant robot)
  • Telepresence robots for experts to consult/advise on medical issues, train and supervise worker decontamination to catch accidental self-contamination, and serve as “rolling interpreters” for the different languages and dialects
  • Physical security for the workers (e.g., the food riots in Sierre Leone)
  • Waste handling (e.g., where are all the biowaste from patients and worker suits going and how is it getting there?)
  • Humanitarian relief (e.g., autonomous food trucks, UAVs that can drop off food, water, medicine, but also “regular” medicine for diabetes, etc., for people who are healthy but cut off)
  • Reconnaissance (e.g., what’s happening in this village? Any signs of illness? Are people fleeing?)
In order to be successful at any one of the tasks, robots have to meet a lot of hidden requirements and sometimes the least exciting or glamorous job can be of the most help to the workers. Example hidden requirements: Can an isolated field hospital handle a heavy robot in the muddy rainy season? How will the robots be transported there? Is it easy enough for the locals to use so that they can be engaged and earn a living wage? What kind of network communication is available? What if it needs repairs? That’s what I am working on, applying the lessons learned in robotics for meteorological and geological disasters.
I am certainly not working alone and am reaching out to experts all over the world. In particular, four groups have immediately risen to the challenge and are helping.  Matt Minson MD and head of Texas Task Force 1′s medical team and Eric Rasmussen MD FACP (a retired Navy doctor) who has served as the medical director for the Center for Robot-Assisted Search and Rescue since 9/11 have offered their unique insights. There are two DoD groups:  the USMC Chemical Biological Incident Response Force (the team that cleaned up the anthrax in DC) with whom I’ve served on their technical advisory board and the Army Telemedicine & Advanced Technologies Research Center (TATRC), where Gary Gilbert MD has led highly innovative work in telemedicine and in casualty evacuation (Matt and I had a grant evaluating robotic concepts).

More entries from our blog
Subscribe to our RSS Feed