Welcome to the Center for Robot-Assisted Search and Rescue (CRASAR) at Texas A&M University

CRASAR is a Texas A&M Engineering Experiment Station Center whose mission is to improve disaster preparedness, prevention, response, and recovery through the development and adoption of robots and related technologies. Its goal is to create a “community of practice” throughout the world for rescue robots that motivates fundamental research, supports technology transfer, and educates students, response professionals, and the public. CRASAR is a dynamic mix of university researchers, industry, and responders.

CRASAR has participated in 15 of the 35 documented deployments of disaster robots throughout the world and have formally analyzed 9 others, providing a comprehensive archive of rescue robots in practice. Our industry partners and funding agencies make a wide range of small land, sea, and air robots available for use by responders at no charge through the Roboticists Without Borders program. Our human-robot crew organization and protocols developed first for UGVs, where studies show a 9 times increase in team performance, and then extended for small UAVs during our flights at Hurricane Katrina has been adopted by Italian and German UAV response teams and was used by the Westinghouse team for the use of the Honeywell T-Hawk at the Fukushima nuclear accident.

CRASAR helps organize and sponsor conferences such as the annual IEEE Safety Security Rescue Robotics conference and workshops such as the recent NSF-JST-NIST Workshop on Rescue Robots.

A good overview of rescue robotics is in Disaster Robotics by Robin Murphy (MIT Press, Amazon, and Kindle) and  Chapter 50 of the award-winning Handbook of Robotics. Here’s a list of all known robot deployments: Table of Responses.

Fun facts from “Disaster Robots”:

- All ground, aerial, and marine robots have been teleoperated (like the Mars Rovers) rather than fully autonomous (like a Roomba), primarily because the robots allow the responders to look and act in real-time; there’s always something they need to see or do immediately

- Robots have been at at least 35 events, and actually used at at least 29 (sometimes the robot is too big or not intrinsically safe)

- The biggest technical barrier is the human-robot interaction. Over 50% of the failures (a total of 27 at 13 incidents) have been human error.

- Robots are not used until an average of 6.5 days after a disaster; either an agency has a robot and they use it within 0.5 days or they don’t and it takes 7.5 days to realize a robot would be of use and get it on site

Click here for more information about CRASAR and its activities.

Donate online to CRASAR to support deployments of Roboticists Without Borders!

Recent News From Our Blog

Robot boats as swift water rescuers, not just for critical infrastructure and restoration/recovery operations anymore!

EMILY at swift water exercise in Texas

EMILY at swift water exercise in Texas

Grant Wilde and Gino Chacon observed the EMILY rescue boat, a new concept in disaster robotics. I have followed Tony Mulligan and his work with EMILY since 2012 and EMILY is really gaining acceptance. He demoed the boat this week during a swift water exercise (which our partners Austin Fire Department participated in- thanks Coitt for the directions!) The robot acts as a barrel-shaped life ring. An operator teleoperates EMILY to a victim in the water and the victim grabs it. The operator then uses the tether to pull EMILY and her cargo to safety.

Creator Tony Mulligan assembling EMILY

Creator Tony Mulligan assembling EMILY

We’ve been pinged many times by fire rescue teams about swift water rescue- though about the use of UAVs. Swift water has many challenges, one of which is that the rescue crew in their boat is at risk for being struck by debris speeding into them. The idea was the UAV could act as a spotter and help coordinate the safety of responders and victims alike. EMILY bypasses some of the challenge by eliminating the responder.
Grant and Gino are working a slightly smaller robot boat for shallow littoral areas, definitely not swift water, for radiation sampling for treaty verification, identifying flood vulnerable areas (with the Hazards Reduction and Recovery Center), and general environmental sampling. Some nuclear power plants or towns can be readily accessed by creeks even if roads are out. Dr. Josh Peschel, a former PhD student now at University of Illinois, is working with these marine platforms to better understand water management.
EMILY assembled and ready to go

EMILY assembled and ready to go

Gino filming EMILY

Gino filming EMILY

More entries from our blog
Subscribe to our RSS Feed