Colorado Mudslides: UAVs and Roboticists Without Borders on standby

The Colorado mudslides appear to be the Washington state SR530 mudslide writ large (4 miles long versus 1 mile long), though thankfully with a search for three people, who could still be alive versus the 43 killed in Washington state.

rwob patch.pptxMesa County is the best place in the world to have a mudslide- Ben Miller, in the Mesa County Sheriff’s office and now director of its Unmanned Aircraft Program, has been an early adopter of small unmanned aerial systems (sUAS). Under his direction, Mesa County got the first approval for an agency to fly over an entire county. His “flock” includes a Draganfly X4-ES rotorcraft (Draganfly is a Robotocists Without Borders member!) with their own version of advanced 2D/3D mosaic software that the geologists and hydrologists at SR530 found so useful. Ben also has a Gatewing and Falcon fixed-wing sUAS.

The UAS providers of the Roboticists Without Borders team (Black Swift, Draganfly, Precision Hawk, and Texas A&M) are on stand-by to assist, possibly providing a LIDAR platform and additional software.  Precision Hawk and their geospatial software, of course, were the stars of our SR530 mudslide response providing an interactive 3D reconstruction of the “moonscape” in less than 3 hours of processing time on a laptop.

Black Swift has been doing some phenomenal work that could prevent mudslides and flooding- they are developing a miniature microwave radiometer package for NASA for their sUAS that can detect soil moisture– which can determine if the soil is saturated and thus about to flood or slide. The package isn’t ready yet, but think about the implications for being proactive next spring!

The size of the mudslide raises the question of the use of multiple sUAS in a divide-and-conquer strategy. There has been a significant amount of research on this in terms of optimal path planning and general coordination. I believe the University of Colorado Boulder may hold COAs by the FAA which permit multiple platforms to be in the same area at the same time– for their storm formation studies, but I could be wrong.

Please donate to Roboticists Without Borders so that team members can continue to donate their time and equipment to help responders and accelerate the adoption of the technology.

 

Preventing disasters: small unmanned aerial vehicles for evacuation and crowd control

This month’s issue of Smithsonian Magazine has an article  “Why are people so comfortable with drones?” on  Brittany Duncan’s preliminary study for her NSF graduate fellowship research on using small UAS for evacuation and crowd. Brittany is my PhD student who recently flew the AirRobot at the SR530 mudslide response. It’s nice to see that robots are being considered for more than the immediate life-saving aspects of search and rescue. Brittany sees a near future where aerial vehicles can act as “headers” and “heelers” to guide and block people into following the right exits during an evacuation.

Soma Turkey Mine Disasters: Mine Disasters and Robots

(note: this blog was referenced by New Scientist) The horrendous number of victims at the Soma mine disaster in Turkey continues to grow. We immediately reached out to Turkish officials through Dr. Hasari Celebi at the Gebze Institute of Technology as a guiding force.  Less than a year ago I had given a keynote at a workshop on disaster robotics being held there by the government with Dr. Celebi as a key driving force.  It was clear that there was many scientists interested in applying their great ideas to earthquake response. Unfortunately it takes time and sustained investment to create a robotics capability for handling such a tragedy and the mine disaster was too soon.

Most people don’t realize that mine disasters have been to date the most common situation for ground rescue robots. As I note in Disaster Robotics out of the 28 disasters where robots have been used or on site between 2001 and 2013, 12 (42%) were underground mine incidents. Of the four disasters where robots were on-site but could not be used, 3 (75%) were underground mine disasters- showing just how much this technology is needed.
2 MSHA wolverine Underground mine disasters in coal mines are especially challenging as there may be methane to cause explosions or because the mine itself catches fire which is difficult to suppress. Mine responses are challenging based on the type of entry into the mine. Dr. Jeff Kravitz at the Mine Safety and Health Administration (MSHA) is the expert on robots for underground mine disasters and we co-authored an article “Mobile robots in mine rescue and recovery” in IEEE Robotics and Automation Society Magazine that summarizes the opportunities and challenges for robots based on an analysis of deployments in the US. MSHA may have the only mine permissible robot in the world (i.e., certified not to cause an explosion in a methane-rich environment)- the V-2, an Andros Wolverine shown in the photo.

 

CRASAR has assisted with two mine disasters Midas Gold Mine (2007) and Crandall Canyon (2007) and was requested to assist with two others but the technology wasn’t there. The Midas and Crandall Canyon events used smaller robots, an Inkutun Xtreme loaned from the pool at SPAWAR and a Inuktun Mine Crawler that could go down narrow boreholes. We also conducted a report for MSHA on underground rescue technologies that allowed access to their use of robots at 7 other mine disasters.

Our thoughts and prayers are with the Turkish miners, their families, and the responders.

(Updated with video) Flew UAS at SR-530 Mudslide

AirRobot flying moonscape at SR-530 mudslide April 23, 2014
AirRobot flying moonscape at SR-530 mudslide April 23, 2014

Roboticists Without Borders returned with member FIT to Washington state with platforms from CRASAR and PrecisionHawk members to order to help determine the eminent risk of loss of life to responders, as they continued to work downslope of a potential secondary mudslide or a breach in the river. Many people assume that disaster robots are just for immediate search and rescue of survivors, but this is one of many examples of where robots can protect the responders.

Our missions were collecting data for the geologists and hydrologists from the “moonscape” and toe of the river where it was impossible to manually survey due to the flooding and quicksand-like mud and couldn’t be surveyed from manned helicopters or see from remote satellite sensing due to the higher altitudes and less favorable viewing angles. These areas are next to the cliff face of the mudslide and not in the victim recovery area.

We flew the AirRobot 100B platform under an emergency COA from the FAA on April 23  but the high winds in the narrow canyon prevented us from flying on the 24th. The PrecisionHawk was not granted an emergency COA, but we used the PrecisionHawk software to do 2D tiling of imagery and to create interactive 3D reconstructions which I will post soon (it’s finals here at Texas A&M). Brittany Duncan and I collected about 33GB of data in 48 minutes of flight time covering 30-40 acres with the CRASAR AirRobot and then about 3 hours of post processing on a laptop by the PrecisionHawk team (Tyler Collins and Justin Kendrick). Getting this type of data for ESF#3 and ESF#9 functions often takes days– now it can be done by them on demand.  This is revolutionary!

FIT has a press release here and I’ll be posting photos and snippets. Big shout out to FIT who helped support the mission with both personnel on-site (Frank Sanborn and Tamara Palmer) and with partial funding.

Speaking of funding– our deployment war chest is empty. CRASAR pays for travel, PPE,  etc. whenever possible for our volunteers, breakage and software upgrades, and this drained the last of our funds. We’re setting up online donations so that you  can join RWB as a funding provider and donate to the cause!

[youtube]http://youtu.be/a2dfnvRNwM0[/youtube] [youtube]http://youtu.be/WoCddEHiJTA[/youtube]