Archive for March, 2015

Vanuatu: How disaster robots have helped in 12 similar events and might help there

I’m here at the UN World Disaster Conference where word of the destruction in Vanuata is coming in and our thoughts and prayers go to out the victims and families. It sounds like the effort is on humanitarian relief.  I’m not seeing any discussion of mitigation/response/recovery of critical infrastructure, which is the historical focus of disaster robotics. Here’s some information on how robots have helped in 12 similar disasters.

Small unmanned aerial systems have been used by rescue authorities in 8 storm or flooding events: Hurricane Katrina, Hurricane Wilma, Typhoon Morakot (Taiwan),  Thailand floods, Typhoon Haiyan (Philippines), Boulder Colorado floods, SR530 mudslide and flood, Serbia floods. UAS are most often used for rapid reconnaissance and mapping of the extent of devastation, condition of transportation routes and what areas are cut off, power lines, and general hydrological and geological mitigation needed to predict, contain, or drain water, etc.

Small marine vehicles have been used by rescue authorities in 3 storm and flooding events: Hurricane Wilma, Hurricane Ike, Tohoku tsunami (Japan).  They are mostly used to identify the state of bridges and ports, debris that is blocking ports or polluting fishing areas, and for the recovery of victims that were washed away into the sea. Plus they were used at the Haiti earthquake to clear underwater debris from the port to allow humanitarian relief supplies to be shipped in (it’s hard to feed a country via planes into a single airport). In Japan, the use of marine vehicles by the IRS-CRASAR team was credited for re-opening the Minamisaniruku new port 6 months earlier than would have been possible with manual divers and in time for the key salmon fishing season.

Unmanned ground robots are almost never used because commercial buildings rarely collapse in these conditions, it is mostly individual homes.

Tohoku earthquake anniversity and UN World Conference on Disaster Risk Reduction

wcdrr-logo-desktop-v3.0It is the 4th anniversary of the Tohoku earthquake and I am en route to Sendai where the United Nations World Conference on Disaster Risk Reduction. It is sobering to think that over 18,000 people died and that the great nation of Japan is still recovering.  It makes it even more appropriate for Japan to host the conference and at Sendai. I look forward to seeing my colleagues from the International Rescue Systems Institute who we worked side-by-side with unmanned marine vehicles.

I will be giving an invited talk on the current state and achievement of  disaster robotics during the Public Forum. In looking back between 2011 and now, the biggest surprise is that unmanned marine vehicles are not being used as much as I would have thought. The tsunami response and recovery showed the efficacy of these tools and how the can do in 4 hours what it take divers weeks to do (if they are available). There’s no surprise in that unmanned systems are being used more frequently! I’ll post the my findings when I give my talk– no spoilers!

Pleurobot is salamander-like robot with lifelike motion

A video showing “multimodal locomotion in a bioinspired robot” has been making the rounds, and the video demonstrates advances in robotics as scientific tools as well as potential robots for search and rescue operations. Its name is Pleurobot.

According to the video notes, the Pleurobot is being developed by the BioRob at EPFL and NCCR Robotics. The robot takes it cues from the salamander and the team is making use of cineradiography to advance their work. They recorded three-dimensional X-ray videos of salamanders, walking on ground, walking underwater and swimming. Tracking up to 64 points on the animal’s skeleton, they were able to record three-dimensional movements of bones in great detail. They deduced the number and position of active and passive joints needed for the robot to reproduce the movements with reasonable accuracy in three-dimensions.

Commenting on their work, Evan Ackerman in IEEE Spectrum said, “The key to Pleurobot’s lifelike motion is its design, which was based on 3D x-ray movies of a real salamander walking and swimming.”

Their main goal is understanding the way that the nervous system coordinates movement in vertebrates. “Pleurobot’s design, with 27 degrees of freedom, allows us to test more advanced mathematical models of the locomotor nervous system towards richer motor skills,” they said. The team said Pleurobot may also prove useful in other ways. “Because of its low center of mass and segmented legs it can navigate over rough terrain without losing balance. With a waterproof skin it can also swim. Those features may one day enable Pleurobot to help in search and rescue operations.”

Check out more information at phys.org