Landslide in British Columbia: how robots can help in such events

The sad news of the mudslide in Canada is very similar to the 2005 La Conchita mudslide, described in this paper on rescue robots for mudslides, where CRASAR had its first post-World Trade Center deployment of rescue robots at the request of the Ventura County Fire Department. Mudslides are fluidized, so like water, the mud penetrates everything nook and crevice. Survivors are generally found in the collaterally damaged structures on the periphery rather than in the direct path. Small ground robots can be useful for trying to get into the crushed and twisted houses and buildings, either from the roof or from under the foundation. But robots and unattended ground sensros can also be useful for monitoring the mudslide- because the responders have to worry about the slide breaking loose and sliding more. Everyone had to evacuate La Conchita because of that. Work has been done by various groups to create unattended ground sensors that can be stuck in the ground  of sensitive areas and wirelessly report soil water content (hey– things are fluidizing here!) and movement (hey- I’m beginning to creep and shift, big movement may follow).  One idea is to use aerial robots to drop these networks of sensors in place after a disaster to help monitor. Otherwise, geologists have to periodically laboriously climb up (and hope not to trigger more slides) and take manual measurements. Our prayers go out to the families and the responders.

Below are pictures from La Conchita:


On the use of construction robots at the Elliot Lake Mall Collapse

Nice article here on the use of mining and construction robots at the mall collapse in Canada. However, the article’s promotion of heavy-duty machinery for search, versus for extrication, may be misplaced.

Our work at 15 disasters since 9/11 and documenting the other known responses strongly indicates that for the search phase, very small agile robots with 2-way audio are desirable. They are small enough to get into the irregular voids or be lowered in through the roof, they are light enough not to cause a secondary collapse, the can move around and get better viewpoints than with a search cam,  inexpensive, and easily transported (from the back of a truck into a backpack…).

A recent example of this is the Hackensack New Jersey Prospect Towers collapse where the NJ Task Force 1 and the UASI teams used Inuktun robots to search for survivors with a couple of hours of the incident. Inuktuns have about a 300 ft long tether, a search cam is usually only to penetrate 18 feet.

Big, heavy gear is certainly of great value for removing rubble, bracing structures, etc. It’s just not the same as small robots for search, finding and interacting with the victim until they are extracted (which can 4-10 hours).