Search Results

#Mexico #Earthquake Overview of robots and earthquakes: background and how they can help

YouTube Preview Image  Our hearts go out to the victims, their families, and the responders in Mexico. CRASAR has not been contacted about robots but this blog may be of use in thinking about how to use robots.

 

Ground, aerial, and marine robots have been used in several earthquakes. A good overview of ground robots for structural collapse is at https://www.youtube.com/watch?v=5Cm2bGlUjbQ. It’s an older documentary but all the issues and gear are still the same.

 

Small unmanned aerial vehicles are probably everyone’s first thought for earthquakes, in part to map out the extent of the damage. They can also be used to help responders determine the shortest, most debris-free route to locations or interest.  For the reconstruction and recovery phases, UAS have been used to fly around and in large buildings that are suspected of being too dangerous for structural specialists to enter and assess the risk of further collapse- for example the cathedrals in Canterbury NZ, Mirandola ,Italy, and Amatrice, Italy.  After the Tohoku earthquake, many experts pointed out that UAVs should be used to determine the state of hospitals- both whether the hospital is still functional but also if it is being overwhelmed by patients.

 

Ground robots also have a role. An earthquake may cause buildings to completely collapse where there are no voids that a responder can get into. The general strategy is to use a canine team to determine if there are survivors in the rubble (dogs can tell if the person is still alive). Typically a boroscope or a camera on a wand is inserted to try to see if they can locate the survivors and also get a sense of the best was to remove material to get to them.  The boroscope or a camara on a wand can only go about 18 feet into the rubble, depending on how twisty the void is. In a major building collapse, survivors may be much further, which is why small, shoe-box sized robots such as an Inuktun VGTV may be used. The “cameras on tracks” robots can pull themselves into the rubble and also change shape to help get into tight spots.  These small robots will usually be tethered, with the tether acting as a belay line and the tether preventing loss of signal.

 

Some interesting robots are the snake robots being developed by Howie Choset at CMU and the Active Scope Camera caterpillar robot being developed by Olympus in conjunction with Japanese researchers led by Satoshi Tadokoro. The ASC was used at the Jacksonville building collapse in 2007.

 

Bigger ground robots, such as those used at Fukushima, can be used in bigger buildings but generally can’t see the ceilings, which is usually very important and happened the New Zealand earthquake. They can’t go into small voids and may be too heavy- they could cause delicately balanced rubble to further collapse and kill a survivor underneath.

 

Marine robots, especially ROVs, are important as was seen in the Haiti earthquake and Tohoku earthquake and tsunami. The earthquake may have changed the shipping channels, damaged bridges and ports, and put debris in unexpected places. Thus shipping is stopped until the shipping channels are cleared- and as was seen at Haiti it’s hard to feed a country with one airport. Shipping is extremely important for getting relief supplies in.

 

There are more details in the case studies in Disaster Robotics  and the Springer Handbook of Robotics on what robots have been used and particular strategies. All of us are happy to answer questions. We wish everyone the best on this terrible event.

Italian Earthquake: Recommendations for using ground and aerial robots for immediate lifesaving

Our thoughts and prayers go out to the Italian people impacted by the earthquake. We’ve reached out to colleagues in Italy in case any of us here can be of assistance. Below is a general overview of what might be useful and why.

From the scanty news reports in the US, my guess is that this event will favor the use of small tethered ground robots for locating survivors in rubble based on the case studies from 9/11 World Trade Center, Cologne Archives collapse, Berkman Plaza collapse Prospect Towers collapse, L’aquila earthquake, Mirandola earthquake, and multiple mine disasters worldwide (see Disaster Robotics, MIT Press, 2014 for those case studies). UAVs may be of value in estimating extent, ascertaining whether roads are open or can be easily cleared to allow responders rapid access, and general damage assessment and recovery operations (as per Nepal and Chile), but probably not for direct life saving- though I could be wrong.

“Small”  as in pipe inspection robots- not a bomb squad robot like the Packbots used at Fukushima- because if a person or dog could get into a void to reach a trapped person, they probably would despite the personal risk. A tether is useful because it solves wireless and power problems- but more importantly any entry would likely be from the top of the structure or the upper parts, so the robot has to rappel down.

A video camera, color, is essential. Thermal cameras may be of use initially but are very hard to use for navigation in confined spaces. So I wouldn’t recommend thermal by itself, rather as a second camera. The value of a thermal camera goes away after a few days because decomposing bodies present a heat signature. Navigation gets harder as small protrusion become the same temperature as the surroundings.

A robot with 2-way audio will be valuable because the operator can call out and listen for sounds of survivors, then medical experts can talk with the victims. But even just a speaker or a microphone by itself can be useful.

Should someone find a survivor, a small tube can be attached to the robot to provide water to a trapped victim- hook up the end to an aquarium or koi pond pump. (This is a great solution worked out by Eric Rasmussen and we tested with the USMC CBIRF unite.) The robot can probably maneuver and bring a small payloads- a radio, a space blanket, power bars (assuming they aren’t severely injured). LACoFD does so many confined space rescues, they can have a kit the size of a Pringles can for trying to give to people trapped in caves and culverts.

Japanese earthquake: how ground, aerial, and marine robots could be used for response

We have been watching with distress the earthquake in Japan and offered any assistance we could provide- however, the first 48 hours are critical for life saving. The International Rescue System Institute (Tokoku University) and the Center for Robot-Assisted Search and Rescue (Texas A&M University)  are the only two centers devoted to disaster robotics, and we work together, so there is considerable expertise available in Japan.

See below for how ground, aerial, and marine robots can be used and best practices are on the home page. Disaster Robotics has 34 case studies worldwide of how these robots have been used at previous earthquakes and disasters through 2013.

I’ll be adding photos and video as I get a chance– this weekend is Aggies Invent: First Responders that we are sponsoring and have two exciting projects based on CRASAR identified (there are 12 others submitted by other response agencies).

Ground robots for locating survivors inside the rubble and speeding up extrication.

Canines typically find survivors but can’t precisely locate where the survivors. Plus dogs can’t provide the “inside view” of the pile of pixie sticks that the extrication team has to be careful not to disturb.  People and canines often can’t get into the rubble because there is often not even a person or dog sized hole that goes all the way from the surface to the interior. Existing boroscopes and cameras on wands can reach about 18 feet or 6 meters into the pile, which means standard US&R equipment is sufficient for single family homes but not apartment buildings or multi-story commercial buildings which are bigger and deeper.

In those case small robots, the size of a lunchbox or smaller, have been used since 2001 (CRASAR at the 9/11 World Trade Center) in go further inside the rubble to where survivors might be and providing the “two for one” of letting the structural specialist visualize how to best remove the rubble to extract. Dr. Tadokoro’s group has one of my favorite small robots, the Active Scope Camera,  that we used together at the Jacksonville Berkman Plaza II collapse. It’s a 6 meter long “caterpillar” robot that can fit in 5cm voids.
Big robots like those used at Fukushima are less valuable because the voids are smaller and the robots can’t move rubble without risking triggering a secondary collapse that will kill the survivors.

UAVs for general reconnaissance and structural inspection.

UAVs have been used since 2005 for disaster response (yes, starting with CRASAR at Hurricane Katrina). The most common uses have been small UAVs for general reconnaissance and for structural inspection. With photogrammetrics, small UAVs are providing geospatial data that are of value to the geologists and public works groups trying to prevent floods, slides, and further collapses. In general, small UAVs are used more frequently because formal responders like the police or fire rescue have access to helicopters and planes. In more remote areas there may be less coverage, so local assets are important. See best practices for UAVs.
One important lesson from the 3/11 earthquake was that the number 1 place to check to see if it was ok and functioning is a hospital!

UMVs for critical underwater infrastructure inspection and reopening ports.

Unmanned marine vehicles, especially ROVs and miniature boats, have been used since 2005 to inspect bridges and reopen ports immediately after an earthquake so that responders can gain access to the affected areas AND get supplies to the hard hit areas. The value of UMVs extends well into the recovery period, both for inspection but also help remap fishing and shipping
channels.

Robots for earthquakes- history of use of ground, aerial, and marine systems plus best practices

Our hearts go out to the victims, families, and responders in Afghanistan and Pakistan. Here are links to

And from our home page, here are helpful 1 page guides and best practices for small unmanned aerial systems that have been incorporated into United Nations humanitarian standards and are continuing to evolve:

Four Surprises about the Use of Unmanned Ground, Aerial, and Marine Vehicles for Hurricanes, Typhoons, and Cyclones

Hurricanes, typhoons, and cyclones form a category of meteorological events referred to as cyclonic activity.  They damage large areas and destroy the transportation infrastructure, interfering with the ability of agencies to find and assist people in distress, restore power, water, and communications, and prevent the delivery of supplies. As I describe in my TED talk, it can take years for a community to recover- the rule of thumb developed by disaster experts Haas, Kates, and Bowden in 1982 is that reducing the duration of each phase of disaster response reduces the duration of the next phase by a factor of 10. Thus, reducing the initial response phase by just 1 day reduces the overall time through the three reconstruction phases to complete recovery by up to 1,000 days. The sooner emergency response agencies can use unmanned systems, the faster they can respond and we can recover from a disaster.

There are three modes or types of small unmanned vehicles or robots: ground, aerial, and marine systems. Small vehicles have the advantage that they are easy to carry in an SUV or a backpack and deploy on demand when the field teams need them, which the military would call a tactical assets. Larger unmanned systems such as the National Guard flying a Predator to help get situation awareness of several counties or provinces requires much more coordination and planning (and expense); these are strategic assets.

Here are four surprises about small unmanned vehicles for cyclonic events (I’ll be adding links to videos through out the day):

1. Small unmanned ground, aerial, and marine systems have been reported at 7 hurricanes since the first use at Hurricane Charley in 2004.

These events are Hurricane Charley (USA, 2004), Hurricane Katrina (USA, 2005), Hurricane Wilma (USA, 2005), Hurricane Ike (USA, 2008), Typhoon Morakot (Taiwan, 2009), Typhoon Haiyan (Philippines, 2013), and Cylone Pam (Vanuatu, 2015).

2. Ground robots are generally not useful.

Ground robots have only be used at 2 of the 7 events: Charley and Katrina. Cyclonic activity tends to damage or destroy swaths of single story family dwellings, not multi-story commercial buildings. If houses are flattened, the debris is not more than 20 feet deep, so traditional techniques work. If houses or apartments are damaged but standing and there is a concern that people are hurt inside, canines can determine in seconds if a person is inside. A door or window would have to be breached to insert a robot (or a person), which means the apartment would then be open to robbers. We learned that while helping Florida Task Force 3 search the retirement communities in Florida affected by Hurricane Charley in 2004. Florida Task Force 3 did use a robot to enter two apartment buildings that were too dangerously damage to enter during Hurricane Katrina, but they didn’t have a canine team which is now generally considered the preferred method.

3. Marine vehicles may be the most useful kind of robot for both response and recovery.

AEOS-1 with accoustic imager inspecting underwater portion of bridge

AEOS-1 with accoustic imager inspecting underwater portion of bridge

Marine vehicles have been used for only 2 of the events, Hurricane Wilma and Hurricane Ike, but could have been effective for all 7. Hurricanes and Typhoons are a double whammy for marine infrastructure- the underwater portion of bridges, seawalls, pipelines, power grid, and ports. First the event creates storm surges along the coast, then flooding occurs inland and hits the coast again.  Bridges and ports can appear to be safe but the surge and flooding can have scoured the ground from under the pilings, leaving them resting on nothing. Debris can have broken off a piling underwater, creating a hanging pile. This means that transportation routes can be cut off during the response, hampering the movement of responders but also hampering bringing in enough food and supplies to feed a country, such as at the Haiti earthquake, which is normally done with ships.  The economy can’t recover until the infrastructure is back in place.

Checking for these conditions is typically done with manual divers but the conditions are dangerous- the current is still high, the water is cloudy and debris is floating everywhere, and divers often have to resort to feeling for damage. There are few divers and it can take months to schedule them, as we saw at the Tohoku tsunami. Marine vehicles, both underwater and on the surface, can be outfitted with acoustic imagers that act as a combination of ultrasound and a camera to check for these conditions. In Japan, we re-opened a port in 4 hours versus weeks by a dive team, and dive teams would not be able to start work for six months after the disaster. The six month delay would have caused the city to miss the salmon fishing season, which is the big economic driver for the region.

See UMV and UAV at Hurricane Wilma here.

4. Small unmanned aerial systems have been used the most frequently of the three types of robots.

SUAS have been used in all but two of the 7 events, Hurricane Charley and Hurricane Ike. Small UAS were still experimental in 2004 when Hurricane Charley occurred but the next day after our experiences as part of Florida Task Force 3, I called Mike Tamilow at FEMA and offer to make introductions to facilitate use for the next hurricane. Unfortunately it wasn’t until next year and several hurricanes later that SUAS were used for Katrina by us and other teams from the Department of Defense. Despite the success of these deployments, SUAS didn’t really take off (pun intended) until 2011 when the technology had matured and come down in price.

Washington State Mudslides Highlight Challenges for Ground and Aerial Rescue Robots

All of our thoughts and prayers go out to the victims, families, and responders. 

I am already being asked about how robots could be used for the horrific mudslides in Washington State. 

To the best of my knowledge, robots have been used only once for a mudslide. That was the CRASAR deployment in 2005 for the La Conchita, California, mudslides which provided unmanned ground vehicles at the request of Ventura County Fire Rescue and Los Angeles County Fire Rescue. Direct victims of mudslides and avalanches rarely have survivors because the ground and snow acts like a fluid displaying the oxygen, leading to suffocation. Victims of collateral damage have a better chance of survivor. CRASAR was called in to help search the crushed houses for missing neighbors; as detailed in Disaster Robotics, the small ground robots didn’t get far in the gooey mud. 

A major challenge for a slide or avalanche is that the robot needs to burrow through a “granular space.” Instead of going through a hole where the hole is at least as big as the robot, the robot needs to go through a space where the holes are smaller than the robot. There’s some interesting research that Dan Goldberg at Georgia Tech, Howie Choset at CMU and I have proposed on exploiting Dan’s work with robots that mimic sandfish, Howie’s miniature snakes for granular spaces but we’ve yet to hit on funding. 

Small UAVs could play a beneficial role. Certainly having the first responder on the scene driving down the road to the slide could able to get a quick overview of how far it extended. At La Conchita we had seen the possibility of small UAS dropping sensors in the slide that could be remotely monitored rather than sending geologists to periodically climb up the slide to make measurements. 

However, the pictures in the news of manned helicopters to airlift out survivors illustrates why air space coordination is a disaster remains a must and why civilians robot enthusiasts shouldn’t fly without permission, like the person filming the Harlem building collapse. The manned helicopters are working in the same under 400ft elevation that many small UAS companies advertise that their systems work in. It is important to remember that if a civilian flies in the airspace over a disaster, their AMA insurance is void (assuming they have insurance) and  regardless they may be subject to legal action. Worse yet, a manned helicopter conducting an airlift has to abort the mission if an unaccounted for vehicle enters their area of operation and thus could cost a victim their life. 

East Harlem Building Collapse: role of ground robots

It doesn’t appear that small ground rescue robots are being used to assist in the search and rescue of the terrible East Harlem building collapses-if you know of any being used please let me know. We offered our robots to DHS the same day and also New Jersey Task Force 1 and the New Jersey UASI team have small robots that they used in the 2010 Prospect Towers parking garage collapse. All of our thoughts and prayers go out to the families of the 7 victims and missing- as well as to the responders working their way through this disaster.

Ground robots have been used  8 times between 2001 and 2013 for search and rescue in structural collapses- crawling underground in building collapses and mine disasters since the 9/11 World Trade Center collapse.  For building collapses shoeboxed sized robots such as the Inuktun VGTV are a popular choice because that are small and the power/communications tether serves as a belay line for lowering the robot. Ground robot have video cameras but can often be outfitted with a thermal camera. The thermal camera is useful for looking for heat signatures of possible survivors and also smoldering fires or live electrical outlets. A robot typically needs both because thermal radiation produces a fuzzy image, not always good for navigation or for structural assessment. We’ve often velcro-ed a thermal camera to a robot and run a separate tether.

Gas leaks are similar to mine explosions in that there is a worry as to whether the electronics of the robots will set off another explosion. The is referred to as whether the robot is “intrinsically safe.” There are different standards for intrinsically safe depending on the industry so that makes it harder for a robotics company to create a certified explosion proof robot.  I know of only one robot that is certified as intrinsically safe- the Mine Safety and Health Administrations very large “sumo” V2 robot, a variant of the Remotec Wolverine.

 

Law Enforcement, First Responder, Border Patrol ground robot market

WinterGreen Research announces a new study that is looking at robots used by Law Enforcement, First Responder, Border Patrol. As the US military pulls out of Iraq and Afghanistan, they have many robots built to help soldiers. The question is how can these robots be used now, and were they effeicntive. Many Law Enforcement, First Responder, Border Patrol are starting to look into using robots to help with their actions, and to help keep their units safe in dangerous situations.
Read the full article at Military Aerospace .

News video: Our aerial and ground robots with Austin Police Department

We’ve had members of the Police Technology Unit of the Austin Police Department over to Disaster City twice to see our Dragan and AirRobot UAVs and our Packbot 510 and SUGV.  SPO Eric Cortez and his colleagues have been terrific in helping us learn more about how they would use these devices, what they look for in a disaster (which the new Dr. Josh Peschel worked on for his PhD),  and how fire rescue and police might share and coordinate. Here’s the link to the Austin Fox Channel video– one embarrassing aspect: Disaster City is a Texas Engineering Extension Service (TEEX)  facility not the Center for Robot-Assisted Search and Rescue.

Underground mine rescue communications

Juan Rojas has passed on this interesting article about a robot controlled with a through-the-ground wireless link and tested in an abandoned mine. Through the ground wireless is a Holy Grail of mine rescue so this appears to be a great step in the right direction!