Archive for the ‘In the News’ Category

Vanuatu: How disaster robots have helped in 12 similar events and might help there

I’m here at the UN World Disaster Conference where word of the destruction in Vanuata is coming in and our thoughts and prayers go to out the victims and families. It sounds like the effort is on humanitarian relief.  I’m not seeing any discussion of mitigation/response/recovery of critical infrastructure, which is the historical focus of disaster robotics. Here’s some information on how robots have helped in 12 similar disasters.

Small unmanned aerial systems have been used by rescue authorities in 8 storm or flooding events: Hurricane Katrina, Hurricane Wilma, Typhoon Morakot (Taiwan),  Thailand floods, Typhoon Haiyan (Philippines), Boulder Colorado floods, SR530 mudslide and flood, Serbia floods. UAS are most often used for rapid reconnaissance and mapping of the extent of devastation, condition of transportation routes and what areas are cut off, power lines, and general hydrological and geological mitigation needed to predict, contain, or drain water, etc.

Small marine vehicles have been used by rescue authorities in 3 storm and flooding events: Hurricane Wilma, Hurricane Ike, Tohoku tsunami (Japan).  They are mostly used to identify the state of bridges and ports, debris that is blocking ports or polluting fishing areas, and for the recovery of victims that were washed away into the sea. Plus they were used at the Haiti earthquake to clear underwater debris from the port to allow humanitarian relief supplies to be shipped in (it’s hard to feed a country via planes into a single airport). In Japan, the use of marine vehicles by the IRS-CRASAR team was credited for re-opening the Minamisaniruku new port 6 months earlier than would have been possible with manual divers and in time for the key salmon fishing season.

Unmanned ground robots are almost never used because commercial buildings rarely collapse in these conditions, it is mostly individual homes.

AAAI-15 Exhibition Interviews

TEES Center for Robot-Assisted Search and Rescue (CRASAR) students Brittany Duncan, a NSF Graduate Fellow, Jesus Suarez, a NSF Bridge to the Doctorate Fellow, and Grant Wilde exhibited different rescue robots at the AAAI-15 exhibition. The students and director, Robin Murphy, were featured in interviews by Austin affiliate KVUE and Houston KHOU.

Thoughts on what the proposed FAA SUAS rules mean for search and rescue

by Brittan Duncan with Robin Murphy

Here are our notes on the recommended rules, which are currently open for public comment and are not in force, and how they might impact public agencies, especially fire rescue.  Current operations should still be run under the existing COA process for public agencies. Also, even though the rules are open for public comments for 60 days, that doesn’t mean the rules will be made official in 60 days or that these will indeed be the final rules.

In the future, COAs may not be necessary for flight, as the rules would let agencies pick and choose whether to fly as a civil operation or as a public entity.

If you are flying in Class G and under 500 feet AGL with a registered vehicle less than 55 pounds and a top speed of less than 100mph with a pilot who has passed the proposed UAS ground school (“aeronautical knowledge test”), you won’t need a COA. You will still have to comply with NOTAMs, TFRs, see-and-avoid rules, and rules for flying over people. Note: you will also need to consider any local regulations on privacy, etc. Remember, just because the FAA says you can fly without a COA in an area, it doesn’t mean your constituency finds it acceptable.

If you are flying in other classes of airspace, you have work with the local ATC. Exactly how this happens is unclear and we suspect that in practice many ATCs will say “get a COA” and in some of those cases, you may still have to have to pilot with a civilian pilot’s license. Hopefully not, but that’s still unclear. It would be the worst case scenario, though, which is manageable.  This gives more flexibility for emergency situations where you need to fly in a tower controlled area but hadn’t made prior arrangements with the ATC- they can say “ok, you can fly this one time but let’s work out a better plan after the emergency is over.” Of course, the ATC can also say “no.”

You can fly over people who are covered, such as those in their houses in a neighborhood or in their cars in traffic, but you are responsible for mitigation, as in: your agency is liable.  You would be allowed to fly over uncovered people only if they  are directly participating in the operation (like other fire fighters and police) and have received a briefing. However, as a public agency, that may not be realistic except during training or highly localized flights during an incident where the site was cordoned off. Fortunately, it looks like agencies will have some discretion in how they alert civilians. Informing residents that you are flying in their area to search for a person, asking people to stay indoors temporarily, posting signage, etc., may be sufficient. Your agency probably already has SOP for various activities and those can be expanded to handle SUAS.  Note that even if your agency feels it is acting within its bounds, SUAS make some people very antsy and thus anything you can do to proactively reduce misperceptions will probably benefit your agency in the long run.

You still have to maintain line of sight.  Still no looking through binoculars or cameras. This applies to both the operator and the visual observer, who must both be able to see the vehicle at any time and should be able to tell which direction it is facing, as well as direction of flight.

You can have a mobile operation with a visual observer on a moving boat, but not a moving car.   This is great news for agencies who want to map rivers or wetlands, “meh” for everyone else.

You can have multiple UAS in the same airspace, but each requires their own pilot and visual observer. We are looking forward to this as we see a need in wilderness search and rescue for a fixed-wing to conduct a thorough survey at a higher altitude while a rotor-craft is directed to the high probability spots for a missing person.

You can eliminate the separate visual observer if the pilot flies “heads up” and always keeps eyes on the UAS. Note: This is only allowed for flights in which you are not using any first person view- you can’t “fly the camera” as the pilot without a visual observer. Our studies with SUAS and decades of studies in manned aviation suggest a single person switching between first person view and external views can lead to errors, so although it adds manpower (sigh) we agree with this.

When you want to use first person view, in conjunction with a visual observer, the visual observer is not allowed to manipulate any flight controls, look through the camera to pan/tilt/zoom in on an object, or initiate any autonomy (e.g., select waypoints). Your mission specialist (for us, there’s usually a responder saying “no, this is what I want to look at”) can’t be your visual observer. This is important to note in systems that require multiple interfaces, such as a hand controller and a computer.  Another option is to fund our research in multi-modal user interfaces that don’t overwhelm the pilot and don’t require them to look at a screen!

You have to have 5 minutes of reserve power to insure a return to home and controlled landing. Note: in practice, you also want to keep track of the distance to home/time to home. We think the real point is always being able to return home unless there is a catastrophic failure of the SUAS.  5 minutes may be excessive for small areas where the SUAS can return safely in less than 2 minutes, but no one has ever been sad to have too much fuel.

You can’t fly at night. It looks like you will have to go through the COA process for this.  The SUAS rules document actually says “The FAA welcomes public comments with suggestions on how to effectively mitigate the risk of operations of small unmanned aircraft during low-light or nighttime operations.”  Which sounds like “if you’ve got any ideas, let us know, because we didn’t come up with anything that could be a hard and fast rule.”

FAA Small UAS rules: impact unclear on emergency response agencies

Yesterday the FAA released their proposed rules for small UAS. The summary focuses on the impact on commercial industry with the implication that emergency response agencies will continue to have to function under the “old” rules of applying for COAs even for class G space. I will be reading through the entire document (it’s 159 pages) in the next couple of days to see what the real impact is.

Mexico City hospital collapse…

A building collapse is almost always terrible, a building collapse of a maternity ward is unthinkable. All of us send our thoughts and prayers to the families of this horrible event.

Although there is no news about any robots being used, robots were first used in disasters for commercial multi-story building collapses– notably the 9/11 World Trade Center. Commercial multi-story buildings present unique challenges for searching because the concrete floors can be densely pancaked in some areas with just inches of space and leave survivable voids in others.

Small robots like the shoe-boxed sized micro VGTV and micro Tracks by Inkutun were used the most at the WTC because they could go into the rubble where a person or dog could not fit and could go further than a camera on a wand. That is still the case, with small robots being used to go between tightly packed layers of rubble at the Berkman Plaza II collapse in Jacksonville (2007) and the Prospect Towers collapse in New Jersey (2010).

Bigger robots such as the IED robots like iRobot Packbot and QinetiQ Talon are often too big for the size of voids in the rubble of a pancake collapse. Really large, “maxi” robots such as the REMOTEC series are not only too big, but the weight poses a problem- as in they are so heavy they could cause a secondary collapse.

If anyone knows of other multi-story building collapses where robots were used, please let me know and a reference and I’ll send a CRASAR patch.

In the meantime, our thoughts and prayers to the families in Mexico…

Emergency Management Magazine…

There’s nothing like appearing on the home page of Emergency Management Magazine to trigger a “holy cow, I haven’t been keeping up the blog!” It’s been hugely busy here between working with students colleagues, and industry partners on

  • creating use cases for robots for Ebola and other infectious diseases with a grant from the National Science Foundation (Eric Rasmussen, MD FACP,  and our medical director for Roboticists Without Borders is the co-PI),
  • prepping UAVs for an upcoming wilderness search and rescue exercise with Brazos Valley Search and Rescue (big shout out to the FAA and CSA for their help!),
  • prepping for the Robot Petting Zoo we are doing with the Field Innovation Team at SXSW to show off real robots used in real disasters,
  • getting to work with Prof. Howie Choset at CMU and Prof. Dan Goldman at Georgia Tech on burrowing robots through a National Robotics Initiative grant from NSF, and
  • teaching an class overload (add case studies of robots at disasters to undergrad robotics as part of my Faculty Fellow for Innovation in teaching award, plus the AggiE Challenge advised by Profs. Dylan Shell, Craig Marianno, and myself on creating ground and water robots to detect radiation )

So things are happening!  Thank you for your donations that make it possible to bring robots to new venues such as wilderness search and rescue and public education events like the Robot Petting Zoo. Most of what we do is based on donations, so please donate here!

 

15 Things Robot Designers Can Learn From Cats

Humans have long admired the ability of cats to always land on their feet — known as the cat righting reflex. The flexible bodies of our feline friends allow them to twist as they fall. It’s no wonder then, that researchers at Georgia Tech are studying the way cats flex and turn in the air – so they can apply what they learn in designing robots that can land without sustaining damage. The applications are numerous!

Check out more information and check out 15 other cat qualities scientists could study to make better robots (as told by Susan C. Willett) at catster.com

Drone America and AMR Collaborate on UAVs for Emergency Rescue

Drone America, an aerospace company, and American Medical Response (AMR), a medical transportation company, have announced a partneship that aims to bring Unmanned Autonomous Systems (UAS) to the EMS industry. By leveraging UAS technologies, AMR’s specialty teams would be able to provide swifter and safer rescue operations in dangerous situations such as disaster response, mountain rescue and swift water rescues.

“We are looking at the various potentials for the use of UAS’s for both the delivery of medical services such as an AED, and as a platform for public safety such as search and rescue operations and communications platforms,” said AMR’s Senior Vice President of Operations Randall Strozyk.

A pre-production model of Drone America’s medical DAx8 UAS was revealed at AMR’s booth during the American Ambulance Association conference in Las Vegas. Recently the AMR DAx8 gave a short flight demonstration inside a North Lake Tahoe Fire Department station for a Channel 8 KOLO News story about drones.

“Drone America’s DAx8 is specifically engineered with emergency services and first responders in mind,” said President and CEO of Drone America Mike Richards.

Check out more information at unmannedsystemstechnology.com

First robot, networked tablets head to West Africa to fight Ebola

The first robot and networked tablets are making their way today to an Ebola treatment unit in Liberia, where they will give aid workers their first chance at sharing data about the deadly outbreak.

Debbie Theobald, co-founder and executive director of Cambridge, Massachusetts-based Vecna Cares left on a flight to Monrovia, Liberia Tuesday night, taking the company’s own CliniPaktablets, a robot and the technology needed to set up a local area wireless network.

For doctors and nurses accustomed to scribbling patient notes on pieces of paper in any of the Ebola Treatment Units (ETU) scattered across West Africa, this will be the first time they’ll have access to portable computers that can share information wirelessly. It also gives them an electronic medical record system to track patients and share treatment and disease information with clinicians in other units and researchers in various countries. This also marks the first time a robot will be working in one of the treatment centers.

“I think that this system is critical to fighting the outbreak,” Theobald told Computerworld. ”This is the first time they’ll be using digital records at all in any of the ETUs. Everyone has been using paper. If they have had a tablet, all the information they’re capturing is stuck on that tablet because they haven’t been able to data share across tablets.”

Vecna Cares, a healthcare IT company, will also be bringing the medical records system, minus the robot, to ETUs in Lunsar and Makeni, both towns in Sierra Leone. Depending on how well the VGo robot functions and is accepted in Monrovia, others could be sent to Sierra Leone to aid outbreak efforts there.

Check out more information at computerworld.com

Cameras, robotic mules could help battle Ebola in West Africa

Researchers are working on technology that could be shipped to West Africa to help fight the Ebola outbreak as soon as a few months from now, while also looking ahead to bigger plans to combat any disease outbreak.

“Absolutely. This is something we can do,” said Robin Murphy, a professor of computer science and engineering at Texas A&M University and director of the Center for Robot-Assisted Search and Rescue said Wednesday. ”There are lots of things we found that can go right now … but this will continue to motivate research in human-robotic interactions and how to understand how you design a new technology, how you test a new technology, how you factor in cultural context, how to factor in the targeted environments and how you train people to use them, she said.”

Tech researchers from around the U.S. met with health care and aid workers nearly two weeks ago to discuss what kinds of technology, such as robotics, big data analysis or communications, could help fight the Ebola epidemic. Now plans are in the works to get the technological aid where it’s needed. The Nov. 7 workshop was livestreamed across locations at Worcester Polytechnic University, Texas A&M, the White House Office of Science and Technology Policy and the University of California at Berkeley. During the meetings, aid workers were able to explain to the researchers the obstacles they faced in using certain types of technology.

Nothing can be simply shipped to a treatment center in a foreign country however. All proposals from U.S. companies to send technology to areas hit by the Ebola outbreak must go through the U.S. Agency for International Development (USAID), which administers civilian foreign aid efforts. USAID has put out a call for proposals, and submissions are due by Dec. 1. Murphy said she’s expecting the agency to quickly act on some of the proposals so that some of the technologies can be shipped to West Africa early in the new year.

While researchers are looking at short-term answers for Ebola, they’re also focused on coming up with bigger, more complex systems that can be ready for outbreaks of other deadly diseases.

For more information, check out computerworld.com