Archive for the ‘Press Releases’ Category

Word from Responders: “Small UAVs are Available, Now Help Us Use The Data They Generate!” REU Students Provide Apps

Virtual reality reconstruction of Blanco River flood by Dr. Russ Taylor from CRASAR flight

TEES just concluded a three day Summer Institute on Floods (July 26-28, 2015), which was hosted by our “mother” center, the Center for Emergency Informatics. The Summer Institute focuses on the data-to-decision problems for a particular type of disaster. This year’s Summer Institute was the second in two-part series on floods and brought together representatives from 12 State agencies, 15 universities, and 5 companies for two days of “this is what we did during the Texas floods” and one day of “this is what we could do or do better” experimentation with small unmanned aerial vehicles, crowd sourcing, computer vision, map-based visualization packages, and mobile phone apps for common operating pictures and data collection.

A portion of the Summer Institute focused strictly on UAVs. The session was organized by the Lone Star UAS Center and the TEES Center for Robot-Assisted Search and Rescue (CRASAR), both of whom flew during the Texas floods.

The UAV field exercises  spanned four scenarios witnessed during the floods:

  • Search of cars and other vehicles swept away by a storm surge for trapped victims;
  • Search for missing persons who may have fled campsites or been swept down river;
  • Assessment of damage to power lines and transformers and presence of standing water which prevents restoration of power infrastructure; and
  • Assessment of damage to houses and estimates of household debris, which is critical to insurance companies estimating damage and agencies such as the American Red Cross in projecting social impacts.

The exercises were staged at the 1,900 acre TAMU Riverside Campus with one fixed wing and three types of rotorcraft  flown by CRASAR and David Kovak, a member of CRASAR’s Roboticists Without Borders program.

A major finding out of the institute was the realization that while State agencies are adopting UAVs, the agencies can’t process all the imagery coming in. For example, a single 20-minute UAV flight by CRASAR at the floods produced over 800 images totaling 1.7GB. There were over a dozen platforms flying daily for two weeks as well as Civil Air Patrol and satellite imagery. Each image has to be viewed manually for signs of survivors, clothing, or debris that indicate a house or car (and thus a person too) was swept to this location.

Given the huge demand for automating image processing, it was no surprise that a panel of four judges from the agencies awarded $900 in prizes to three students from the National Science Foundation Research Experiences for Undergraduates (REU) program. The prizes were for software that classified imagery and displayed where it was taken.

First place went to Julia Proft for an application that used computer vision and machine learning to find images from the floods which contained a spectral anomaly such as color. Below is UAV image flagged with an amaloy and anomalies indicated on a parallel image to make it easier to find where in the image the anomalies occurred without marking up the image and blocking the view.

UAV image flagged with an amaloy and anomalies indicated on a parallel image

urban debrisSecond place went to Matt Hegarty for an application that used computer vision and machine learning to find images from the floods which contained urban debris having straight lines or corners. In this image, the program found  instances of trash, pvc poles, and other indications of where houses (and possibly victims) had been swept down river.

 

Third place went to Abygail McMillian for a program that visually displayed where and when UAV data or any geotagged data was taken. The spatial apsect is important for responders to see where assets have sensed- at Nepal, UAV teams often surveyed the same areas but missed important regions. The temporal aspect (a timeline scale on the map) is important because with the changes in the river flood stage, hydrological and missing person images become “stale” and flights should be reflown to get new data.

Data display with timeline

The 10 students (nine from under-represented groups) were from Colorado, Georgia, Puerto Rico, South Carolina, Texas, Vermont, and Wyoming and spent  the summer conducting research through the Computing for Disasters NSF REU site grant under the direction of Dr. Robin Murphy. Multiple State agencies requested those student-created apps be hardened and released. In previous years, the panels have awarded prizes primarily to hardware- UAVs, battery systems, communications nodes, etc. This year, the focus was on software and programming to help analyze the data the hardware generates.

 

 

Flood of data may be the biggest problem in dealing with floods

We just concluded a three day Summer Institute on Floods (July 26-28, 2015), which was hosted by our “mother” center, the Center for Emergency Informatics. The Summer Institute focuses on the data-to-decision problems for a particular type of disaster. This year’s Summer Institute was the second in two-part series on floods- even though there was a drought last year, our TEEX partners were very worried about flooding for Texas and flooding is the number one disaster in the world. It was originally scheduled for early June but had to be moved due to the floods and allowed us the opportunity to discuss topics while they were still fresh on everyone’s minds.

 

The Summer Institute brought together representatives from 12 agencies, 15 universities, and 5 companies for two days of “this is what we did during the Texas floods” and one day of “this is what we could do or do better” experimentation with small unmanned aerial vehicles, crowd sourcing, computer vision, map-based visualization packages, and mobile phone apps for common operating pictures and data collection. The field exercise was designed to track the resource allocation of field teams, how they can acquire data from the field from UAVs and smartphones, then how the data can be effectively organized, analyzed, and visualized.

Here are my preliminary findings:

  • Agencies are adopting small UAVs, social media, and smartphones apps to acquire new types of data, faster and over larger geospatial and temporal scales than ever. Small UAVs were used during the Texas floods in all of the affected regions (big shout out to Lone Star UAS Center- we flew under their direction during the floods). Agencies were monitoring social media, in one case to uncover and combat a rumor that a levee had broken. Texas Task Force 1 and other agencies used General Dynamics’ GeoSuite mobile app for giving tactical responders a common operating picture (big shout out- GeoSuite was introduced and refined starting with the 2011 Summer Institute).
  •  Wireless communications is no longer the most visible barrier to acquiring data from the field in order to make better decisions.  While responders in the field may not have as much bandwidth as they did before a disaster, cell towers on wheels are being rapidly deployed and the Civil Air Patrol flew repeater  nodes. That said, wireless communications isn’t solved as hilly geography can prevent teams from connecting to sparse temporary nodes. Plus keep in mind that large parts of rural Texas have limited or no connectivity under normal conditions.
  • The new barrier is what to do with the data coming in from unmanned systems, news feeds, social media feeds, and smart phones. Consider that a single 20-minute UAV flight produced roughly over 800 images totaling 1.7GB. There were over a dozen platforms flying daily for two weeks as well as Civil Air Patrol and satellite imagery. Most of the imagery was being used to search for missing persons, which means each image has to be inspected manually by at least (preferably more). Signs of missing persons are hard to see, as there may be only a few pixels of clothing (victims may be covered in mud or obscured by vegetation and debris) or urban debris (as in, if you see parts of a house, there may be the occupant of the house somewhere in the image). Given the multiple agencies and tools, it was hard to pinpoint what data has been collected when (i.e., spatial and temporal complexity) and then access the data by area or time. Essentially no one knew what they had.  Agencies and insurance companies had to manually sort through news feeds and public postings, both text and images, to find nuggets of relevant information.
  • The future of disasters was clearly in organizing, analyzing, and visualizing the data. Responders flocked to SituMap, an interactive map-based visualization tool that Dr. Rick Smith at TAMU Corpus Christi started developing after the 2010 Summer Institute and is now being purchased by TEEX and other responders. The agencies awarded $900 in prizes to NSF Research Experiences for Undergraduate students for software that classified imagery and displayed where it was taken won 1st, 2nd, and 3rd. Multiple agencies requested those apps be hardened and released as well as the Skywriter sketch and point interface (CRASAR developed that for UAVs and it is being commercialized) and the wide area search planning app developed over the last two summers by other students from the NSF REU program. In previous years, the panels have awarded prizes primarily to hardware- UAVs, battery systems, communications nodes, etc. This year, the attitude was “those technologies are available, now help us use the data they generate?”

Each year we hear the cry from emergency management “we’re drowning in data, help” and this year it was more than a bad pun.

 

How to Fly at Floods: Summer Institute PLUS Roboticists Without Borders UAV training

One word about the floods and about UAVs: informatics. Read on to see what I mean ;-)

As I blogged earlier, on July 16-28, the Center for Emergency Informatics’ 2015 Summer Institute is on flooding and will bring together state agencies and municipalities who were part of the Texas floods with researchers and industry for a two-day workshop and 1 day exercise. The exercise will include UAVs flying the missing persons missions and the recovery and restoration missions.

Notice that it’s the Center for Emergency Informatics hosting the event because it’s about the right data getting to the right agencies or stakeholders at the right time and displayed in the right way that will enable them to make the right decisions. UAVs (and marine vehicles such as Emily and the small airboats being developed at Carnegie Mellon, Texas A&M, and University of Illinois) have a big role to play. But UAVs are useful only if the entire data-to-decision process works, aka informatics.

The Summer Institute July 26-28 will also host a training session for Roboticists Without Borders members specifically on UAVs and the best practices of how to fly at floods and upcoming hurricanes and collect the useful data– what do the decision makers need? Again, this is the informatics, the science of data, not the aeronautics. The training is independent of platform- because what the decision makers need is what they need ;-)   The current (and evolving) best practices are derived from three sources:

  1. CRASAR RWB deployments going back to 2005 Hurricane Katrina Pearl River cresting and including the Oso Mudslides and our deployment with Lone Star UAS Center to the Texas floods,
  2. the reports and analyses of what has worked at typhoons and other flooding events worldwide, and
  3. what researchers through out the world, especially the IEEE Safety, Security, and Rescue Robotics technical community, are doing.

For example, video is not as useful as high resolution imagery for searching for missing persons. Infrared isn’t helpful except in the early morning. Some missions and terrains require remote presence style of control, other can use preprogrammed flight paths. Complex terrains such as river bluffs may require flight paths that are vertical slices, not horizontal slices. Many more and I’m sure we will learn more from each other.

The training session will consist of evening classes on July 26 and 27, with field work on July 28 at the 1,900 acre Riverside Campus. We will fly fixed-wing and rotorcraft for response missions (reconn, missing persons, flood mitigation) and for recovery/restoration (damage assessment, debris estimation, household debris estimation, power utility assessment, transportation assessment). The scenarios will be designed by experts from Texas Task Force 1 and the representatives from the agencies that would use the information, including the fire rescue, law enforcement,  Texas insurance commission, SETRAC, etc.).

It’s not too late to join Roboticists Without Borders and attend! It’s free.

Hope to see you there!

 

Summer Institute Dates Announced (finally!) July 26-28

The 2015 Summer Institute on Flooding will be held on July 26-28 at the Riverside Campus, College Station, Tx.  Check out the information at http://crasar.org/?p=1834

 

Update: Flooding disasters continue to mount casualties and challenge response efforts

We are working with our partner the Lone Star Unmanned Aerial System Center, one of the 6 FAA test centers, to help support the flooding response and recovery efforts for the Texas floods. The floods are a sad example of how flooding costs the U.S. more than 80 lives and $8 billion in damages each year. And that excludes storm surge from hurricanes.

Technology based solutions have advanced to where employing robotic assisted solutions can aide in crisis assessments by federal, state and local officials and emergency workers. Yet more data adds another layer of complexity and extra coordination of robot assisted efforts.

Accurate ground and aerial surveys can help decision makers choose where to deploy limited resources in the best way. By quickly identifying survivors, any follow on threats from the natural disaster, collecting measurements of debris fields, volume of water flows or similar data can be provided without endangering the emergency responders.

Water gone wild and what the Center for Robot-Assisted Search and Rescue (CRASAR) is working to do:

Texas A&M’s Center for Emergency Informatics (CEI) continues its two-year study of information technologies, including unmanned systems, in response to floods. The CEI brings together practitioners, academics, and industry experts to converge and test their knowledge hardware and software to respond to an array of water borne disasters.

CEI as the host for the Summer Institute on Flooding, slated for June 16-18, will set the stage for testing ideas, marry technologies and coordinate decision makers in real-time flood based scenarios

From the 2014 summer institute 42 representatives from 12 states tapping 14 agencies, 14 universities, and eight businesses were able to judge what information technology was mature enough, or which needs more development to assist with flooding response.

This year’s summer institute will include three exercises, each representing the key problem missions identified by the participating agencies:

  • Swift water rescue – a scenario has been developed where suddenly rising waters cut off helping responders to rescue people. Responders from Texas Task Force 1 using the characteristics of a campground flooding will be offered realistic challenges. The TEEX designed exercises focus on real missions rather than around technologies.
  • Life-saving response and immediate mitigation: identify best ways to assess where’s the flood, who is at risk?
  • Restoration and recovery- exercise decision making for resource allocation to restore roads, electricity, sewage, etc. And engaging insurance companies to conduct property damage assessment and projections of debris generation estimation to manage post flooding problems with decay, vermin and disease.

The growth of small UAVs and flooding response:

Small UAVs have been tasked for at least eight disasters with flooding or had flooding associated with it:

  • Hurricane Katrina 2005
  • Typhoon Morakot, Taiwan 2009
  • Thailand Floods 2011
  • Typhoon Haiyan, Philippines 2013
  • Boulder Colorado floods 2013
  • Oso Washington Mudslides 2014
  • Balkans flooding Serbia 2014
  • Cyclone Pamela Vanuatu 2014

From the several UAV platforms that went airborne each provided rapid and often timely information to officials and for responders in search and rescue missions as well as the difficulties with recovery.

General reconnaissance: addressing where’s the flooding, where are the people cut off by the flooding, and what roads are still passable.

Hydrological situation awareness: both real-time and post-processed. The flooding caused by the Oso mudslide was a real problem and rotorcraft could hover and stare at the river, letting the hydrologists estimate the flow rate in different areas. The biggest need remains surveying the amount of flooding. And with the addition of photogrammetric image software – UAVs provided details of the terrain and potential for additional flooding or the best place to put a dyke, channel or other mitigation. Our partners at FIT took it further and printed out a 3D model of the terrain to help everyone visualize the terrain.

The power of Unmanned Autonomous Vehicles:

  • Over watch for swift water rescue teams: our friends at South Carolina Task Force 1 have been pushing us to help create the protocols for using small UAVs. Seeing something such as a logjam that might be coming down river and pose a threat to life and limb as they work to rescue people. They’ll get their wish as this is one of the scenarios to be unfolded in our 2015 Summer Institute on Flooding in June hosted by CEI.
  • Debris estimation: both the debris directly from the flood and the indirect debris that follows on from people having to rip out sheet rock and toss water logged carpets. The advances in photogrammetrics make it possible to estimate the volume of debris. That is based on having the “before” survey of the area. To test it, we flew with PrecisionHawk at the Bennett Landfill superfund site in February 2015 to estimate the volume of toxic trash, which was on fire and needed to be safely removed. Part of the data analysis included estimating the content type, because vegetation and construction materials have to get handled and processed differently.
  • Delivery of supplies to isolated regions. We learned during last year’s summer institute that if the locals can hold their own for 72 hours, usually that was sufficient. In Texas, where breeding stock can represent hundreds of thousands of dollars of investment, someone to stay behind may make sense. Determining that they are not a victim is vital. Disasters can take people by surprise with a bridge being washed out or a vital need of medicines and other perishables. A group of Texas A&M aerospace students won 2nd place for their small, hefty fixed-wing UAV that could be used to drop off heavier/bigger bundles of supplies from further distances. Groups like Matternet, who like CRASAR are members of FIT, are looking at delivering medicine with rotorcraft.
  • Delivering lifelines, life jackets, and small things to people trapped on roofs: A note about delivering things with a rotorcraft- Using rotorcraft to carry a line or bottle to someone is complicated by the weight and distribution of them. Those factors usually make the UAV very sensitive to wind and control errors. As such, if an open rotor system is used, more distance than normal from a person is needed to account for such errors. One senior design project from last year’s Summer Institute created a two-way audio system for rotorcraft. Since rotors can generate about 85 dB of noise hanging a microphone and speaker on the UAV is ineffective. The Computer Engineering team used noise reduction algorithms from National Instruments LabVIEW to prototype a lightweight 2-way audio system impervious to noise.

Look for more to come from the 2015 Summer Institute for Flooding, June 16-18.

 

Tohoku earthquake anniversity and UN World Conference on Disaster Risk Reduction

wcdrr-logo-desktop-v3.0It is the 4th anniversary of the Tohoku earthquake and I am en route to Sendai where the United Nations World Conference on Disaster Risk Reduction. It is sobering to think that over 18,000 people died and that the great nation of Japan is still recovering.  It makes it even more appropriate for Japan to host the conference and at Sendai. I look forward to seeing my colleagues from the International Rescue Systems Institute who we worked side-by-side with unmanned marine vehicles.

I will be giving an invited talk on the current state and achievement of  disaster robotics during the Public Forum. In looking back between 2011 and now, the biggest surprise is that unmanned marine vehicles are not being used as much as I would have thought. The tsunami response and recovery showed the efficacy of these tools and how the can do in 4 hours what it take divers weeks to do (if they are available). There’s no surprise in that unmanned systems are being used more frequently! I’ll post the my findings when I give my talk– no spoilers!

FAA Small UAS rules: impact unclear on emergency response agencies

Yesterday the FAA released their proposed rules for small UAS. The summary focuses on the impact on commercial industry with the implication that emergency response agencies will continue to have to function under the “old” rules of applying for COAs even for class G space. I will be reading through the entire document (it’s 159 pages) in the next couple of days to see what the real impact is.

Emergency Management Magazine…

There’s nothing like appearing on the home page of Emergency Management Magazine to trigger a “holy cow, I haven’t been keeping up the blog!” It’s been hugely busy here between working with students colleagues, and industry partners on

  • creating use cases for robots for Ebola and other infectious diseases with a grant from the National Science Foundation (Eric Rasmussen, MD FACP,  and our medical director for Roboticists Without Borders is the co-PI),
  • prepping UAVs for an upcoming wilderness search and rescue exercise with Brazos Valley Search and Rescue (big shout out to the FAA and CSA for their help!),
  • prepping for the Robot Petting Zoo we are doing with the Field Innovation Team at SXSW to show off real robots used in real disasters,
  • getting to work with Prof. Howie Choset at CMU and Prof. Dan Goldman at Georgia Tech on burrowing robots through a National Robotics Initiative grant from NSF, and
  • teaching an class overload (add case studies of robots at disasters to undergrad robotics as part of my Faculty Fellow for Innovation in teaching award, plus the AggiE Challenge advised by Profs. Dylan Shell, Craig Marianno, and myself on creating ground and water robots to detect radiation )

So things are happening!  Thank you for your donations that make it possible to bring robots to new venues such as wilderness search and rescue and public education events like the Robot Petting Zoo. Most of what we do is based on donations, so please donate here!

 

Ebola Robot Workshop at Texas A&M: my report out

TEEX trainer in protective gear with a "MUTT" robot carrying a litter at the workhop demo.

TEEX trainer in protective gear with a “MUTT” robot carrying a litter at the workhop demo.

CRASAR, with funding from the Center for Emergency Informatics, and the TEEX Product Development center held a two day series of workshops on robotics for medical disasters.  The major takeaway was that robots do exist that could be immediately repurposed now to protect Ebola health workers but how robots fit into the medical response enterprise is as important as what the robots can actually do. While most roboticists intuitively know that what will work in the US is not the same as what will work in West Africa, the differences go beyond physical constraints such as level floors, ample power, and reliable wireless communications infrastructure. Less intuitive is that the cultural appropriateness of the technology and the impact on the existing workflows and practices is equally important.

The workshops considered how robots could be used immediately and in future domestic medical responses. Hardened robots (and automation/CPS technologies) do exist that could be immediately repurposed to provide logistical services (e.g., packing and hauling contaminated waste) and reconnaissance (e.g. observing signs of mass graves near a village), less so for clinical applications (e.g., directly working with patients). The participants strongly concurred that a research roadmap is needed to prepare robots that the US can effectively use in future medical disasters.

The success of hardened robots in providing these services depends on ensuring that they are appropriate for the work domain in five ways:

  1.  Fit the cultural context. For example, a telepresence robot allowing a certified medical interpreter to talk with the family and talk the patient’s history may overwhelm a non-Western family who has never seen a computer. A less obtrusive telepresence solution may be more practical in that cultural context.
  2. Fit the existing workflow and practices. For the short term, solutions aren’t solutions if they require health workers or medical responders to adopt radically new procedures. They simply can’t handle more things to do or change how they perform their current tasks (which impacts how everyone performs all the other tasks- “simple” changes can have system ramifications). However, small changes that produce at least a tenfold benefit can make a difference.
  3. Can function in the target environment. For example robots in West Africa would have work reliably in field hospitals with canvas floors and narrow doors, muddy dirt roads in the rainy season, with power and wireless communications limitations, etc., while robots in the US would have more pristine conditions. Different groups use different decontamination procedures and chemicals- such as dousing everything with chlorine beach solution (easy and inexpensive) or using more chemically sophisticated decontamination foams used by urban hazardous materials teams.
  4. Are maintainable and sustainable. Health workers and medical responders won’t have the time and skills to repair robots (especially if wearing PPE) and may not have access to consumables such as batteries to enable operations for weeks and months. A problem with the Fukushima response was that many robots were actually prototypes functioning at a Technical Readiness Level of 7 rather than a well-tested Level 9 system.
  5. Are easy to use and be trained on. This is related to fitting into the existing workflow and practices, but deserves special emphasis. The health workers and responders will not have significant amounts of time to learn new tools, as their days are already overloaded and they have little personal time.  Robots must be vetted for ease of use. Effective training for medical missions is important and the role of simulation or serious games should not under-estimated.

The sentiment shared by the TAMU participants was that the biggest barrier to near-term use was not the lack of capable robots but rather the lack of requirements that would allow industry to invest in repurposing robots and  enable agencies to test and evaluate the robots and develop training.  Currently there are no details on the operational envelopment for the robot or operator. There is no clearinghouse of social science data on cultural appropriateness or bioethics or specific missions.

OVERVIEW OF WORKSHOP ACTIVITIES

The first day of the workshop was hosted by CRASAR and held at the National Center for Therapeutic Manufacturing. The day was divided into two portions. One was a simulcast of shared presentations with the other three sites and brainstorming as part of the planning workshops on Safety Robotics for Ebola Workers for the White House OSTP/National Robotic Initiative. The other part, the Texas A&M Workshop on Robotic, Automation and Cyber Physical Systems for Medical Response to Disasters, provided additional talks and discussions on general domestic medical response. The Texas A&M talks covered the state of the practice in DoD robots (TARDEC) and casualty evacuation systems (TATRC) that can be repurposed, lessons learned so far in using robots at the Fukushima Daiichi decommissioning (University of Tokyo), and opportunities for community recovery (TAMU Hazards Reduction and Recovery Center). The day culminated with a reception and a thought provoking keynote talk by Andrew Natsios (TAMU Bush School of Government and Public Policy), who served as administrator of USAID from 2001-2006.

The second day, the Infectious Disease Response Workshop,  was hosted by Caleb Holt and the TEEX Product Development Center and held at the TEEX Emergency Operations Training Center/Disaster City® complex. The focus was on the practice of medical response (one of TEEX many courses that they teach). A major portion of the day was spent in demonstrations of the current practices in medical response, walking participants through 3 modules of a field hospital (also called an Emergency Treatment Unit or ETU), showing how contaminated waste is stored and overpacked, and how domestic responders, equipment, and ambulances are decontaminated. One demonstration was not a current practice but showed how existing robots might be of use.  That demonstration showed the General Dynamics Land Systems MUTT, a robot wagon that acts like a dog and can carry waste, supplies, or one or two litters. A responder guides the robot with a leash rather than a video game controller that is hard to carry and use while wearing personal protective equipment. If the responder stops, the robot stops. If the person backs up, the robot backs up. The second day also featured panels of practitioners, including from the Texas Ebola Task Force and the USMC Chemical Biological Incident Response Force, comparing military and domestic practices

TAMU FINDINGS ON WHAT ROBOTS CAN BE USED FOR

In terms of overall medical disasters, applications appear to fall into one of three broad categories below, regrouping the preliminary list of nine functions discussed in an earlier blog. Each category has a different set of stakeholders and a different operational envelope that the robots would operate in. Clinical applications are possibly what people think of first– how robots can replace what health workers do now—but logistical applications are perhaps the most feasible and practical.

Clinical:  Clinical applications are where robots are used in the ETU as a “force multiplier” (another way of saying “reducing manpower”) by taking over some of the activities that health workers do or as adding reliability by coaching or supervising activities. Ignoring for a moment the cultural appropriateness and other adoption issues, robots could enable

  • Remote health workers to assist other health workers, such as telepresence robots (or just cameras/tablets) coaching or supervising taking off PPE– though the general consensus of our responder base was that having a second person physically helping with decon was more valuable than having someone saying “hey, you touched your face while trying to lift your hood.” Domestic hazmat responders and the USMC Chemical Biological Incident Response Forces use a two personal decontamination process.
  • Health workers could use robots to interact with patients, reducing the number of times workers have to risk exposure.  Robots could provide non-invasive point-of-care such as changing IV bags, though the TAMU participants were more reserved about roboticizing invasive procedures such as starting IV lines.
  • Remote health workers to interact with family members, such as remote qualified medical interpreters working through telepresence to help with patient intake forms.

Logistical: Logistical applications can take place within the ETU, but the construction, layout, and clutter of ETUs make it hard for mobile robots to move around. Some ETUs have canvas floors over dirt or mostly level manufactured floors, and almost all have raised areas to step over between modules that seem intended to foul wheels. The general thought is that flexible automation and materials handling are more likely to be of benefit within an ETU and that robots would be more useful for outside the ETU. Logistical robots are also interesting in terms of stakeholders. Since they are not performing clinical functions, in theory the robots could be operated by locals (assuming favorable cultural considerations).

Logistical robots could provide

  • Materials handling. Robots could reduce the number of times humans handle contaminated waste or the number of people needed to carry a litter. The robots could pack and carry materials from the warm zone to the cold zone (e.g., taking out the trash) or carry supplies into the warm zone, saving another cycle of a person having to don and doff PPE.
  • Decontamination. Robots could spray biocide foam on equipment, though there was several ideas for using gases to rapidly decontaminate ambulances so as to keep them in service.
  • Delivery and resupply. Unmanned aerial vehicles or boats could drop off small amounts of supplies to villages cut off by the rainy season.

Reconnaissance: Reconnaissance activities take place outside of the ETU. Aerostats or UAVs can provide awareness of long lines or gathering refugees. A more somber recon activity is to fly over villages and look for signs of freshly turned earth indicating graves.

Other:  The workshops also touched on preparation for medical response, such as redesigning field hospitals to make it easy to use robots and to add cameras, internet repeaters, etc. The workshops raised the value of automated construction in reducing the non-medical members of the team needed to set up and maintain the ETU.

More About Our Workshop on Safety Robotics for Ebola Workers Nov. 7-8

CRASAR members in Level A (2004)

CRASAR members in Level A (2004)

Texas A&M is one of the four sites co-hosting a OSTP/NRI Workshop on Safety Robotics for Ebola Workers. Our workshop will be November 7-8, with November 7 coordinated with the other three sites and November 8 as a follow-on at Disaster City specifically on technology transfer. We are still working on the agenda, but attendance is limited and by invitation. Participants need to be physically at College Station in order to help generate and rank the list of opportunities for robotics to give to the White House and to work with the medical and humanitarian responders to elicit operational details critical for successful technology transfer. Attached are some photos of a 2004 robotics exercise we hosted with the USMC Chemical Biological Incident Response Force- as you can see we learned a lot about working with PPE. Likewise our involvement in the Fukushima Daiichi nuclear accident reinforced and amplified how little things can trip up responses.

Our site’s workshop  will address how robots can be used beyond protecting Ebola workers and that it will focus not only on helping identify what robots can do but on how robots must do it in order to be successful. Here at A&M we are striving to create a set of detailed use cases and projected robot requirements that can be used by industry and the TEEX Product Development Center. The robotics community cannot provide robots without understanding the needs otherwise engineering mistakes or mismatches that will be both  financially costly and delay the delivery of effective solutions.

Robot carrying a victim at CRASAR/USMC CBIRF exercise (2004)

Robot carrying a victim at CRASAR/USMC CBIRF exercise (2004)

To meet these objectives, our workshop is focused on working with medical and humanitarian relief experts (they talk, we listen) to answer two questions:

  • what are the most pressing problems, barriers, or bottlenecks? e.g. minimizing contact while burying bodies or disposing of waste, health worker protection from infection,decontamination and disinfection of facilities, detection of presence of Ebola in facilities,tele-consulting by remote experts, health work physical safety, delivery of supplies, etc.
  • What is the value proposition of using a robot? e.g., benefits versus manpower, logistics support, training requirements, economic costs, etc.Is a robot the best choice? For example, Dr. Mark Lawley here in Industrial and Systems Engineering is working on adapting low-cost flexible manufacturing methods for waste and materials handling within the field hospitals where a mobile robot would be a technological overkill.
In my previous blog, I described 9 categories of applications that we’ve identified so far for robots for Ebola.  It’s fairly easy to come up with ideas and there is a wealth of ground, aerial, and marine robots that can be repurposed. But it’s much harder to determine  what’s the real value to the medical and humanitarian responders and to ferret out those hidden requirements that support a successful technology transfer.  Our research and hands-on experiences at CRASAR has shown that military robots have not been a perfect match for fire rescue and law enforcement and many attempts by vendors to deploy their robots to disasters or to sell their robots to the homeland security community have failed. I see these failures stemming from three  types of constraints: the operational envelope, work domain,and culture.
 
  • The operational envelope focuses on workspace attributes such as environmental conditions, size of doors in field hospitals, communication and power infrastructure, etc. As detailed in Disaster Robotics, several types of rescue robots were not used at the 9/11 World Trade Center because they could not fit in the luggage bays on buses hired to carry FEMA search and rescue teams. Some concerns about robots such as how can robots be decontaminated  become moot  if the robot can be recharged and maintained by workers inside the Hot Zone so that it never needs decon– but this of course means that functions can be performed by workers wearing personal protection equipment.
  • The work domain is critical as anyone who works in system design knows. Who are the stakeholders? Will these robotic solution employ locals so as to help support their economy? If so, what does that mean in terms of making robots that are easy to use and reliable? We use a formal method called cognitive work analysis to determine the work domain.
  • Culture is technically part of the work domain, but I personally think it merits special attention. We robot designers need to have cultural sensitivity to customsfor caring for the ill and conducting burials if we create robots to tend to the sick and transport the deceased. The rhythms of village life also impact humanitarian relief, for example it is better for a medium sized UAV to drop off a large payload of supplies and let the village equivalent of the American Red Cross representative go fetch it and deliver it to different households as part of their daily routine or should a smaller UAV do a precision drop to individuals?
Robot operator's view from the controller

Robot operator’s view from the controller

Robot eye view of victim being transported so medical person can make sure they aren't having a seizure, etc.

Robot eye view of victim being transported so medical person can make sure they aren’t having a seizure, etc.