Archive for the ‘News’ Category

Free UAS Awareness and Best UAS Practices for Emergency Management Class at Governor’s Hurricane Conference

Roboticists Without Borders offered two sessions of a 3.5 hour class consisting of three modules: unmanned systems awareness, unmanned aerial systems awareness, and best UAS practices at the 2017 Governor’s Hurricane Conference in West Palm Beach, Florida. Over 35 emergency professionals representing over 28 local and state agencies attended and received certificates for participation. The class targeted chiefs and managers who are interested in what UAS (and robots in general) have been used for, what are the costs including the hidden costs of manpower, training and maintenance, what are the regulatory issues, and how to handle public perception. The class also went through the types of missions involved in each major type of disaster and the associated unique CONOPS and workflows for each mission. The class emphasizes data management and how to get, and share, actionable data in real-time.

The modules were created by Florida State University Emergency Management and Homeland Security Program and the Texas A&M Engineering Experiment Station Center for Robot-Assisted Search and Rescue. The material is based on formal training created by CRASAR originally funded by the State of Florida, plus lessons learned from over 30 deployments by RWB members, and studies by FSU and Texas A&M. The modules are normally incorporated in a longer class with hands-on demonstrations of unmanned systems.

The class is offered for free as part of the RWB mission to accelerate the adoption of unmanned systems by emergency professionals.

New Zealand: what can robots do for a tsunami and quake?

Our thoughts and prayers go out to the Kiwis and especially to our colleagues at the New Zealand Fire Service who have been diligently adopting robotics.

So when a tsunami strikes, what can robots do? As was shown at the 3/11 Japan tsunami, unmanned marine vehicles can accelerate economic recovery by inspecting critical underwater infrastructure

YouTube Preview Image As was shown by our Japan-US deployments at the invitation of two municipalities at the 3/11 Japan tsunami, unmanned marine vehicles  (UMV) can assist with the response and accelerate economic recovery by inspecting critical underwater infrastructure- the underwater portions of bridges, ports, and shipping channels that are vital for access by responders and for getting supplies to any cut off populations. Later, the UMVs can help with environmental remediation, finding fishing boats and cars leaking gas and oil into pristine fishing waters and identifying other sources of pollution or dangers to fishing and navigation.

UAVs could be used to assess the overall boundaries of the incident, though most of the damage is near the ground. Like flooding, this is hard to get the angles to accurately assess damage. In places such as New Zealand, the agencies (and news media) generally have enough resources to get a general aerial assessment.


Dufek wins Best Field Paper Award at IEEE SSRR!

Left to right: Jan Dufek, Dr. Auke Ijspert, Dr. Kamilo Melo

Left to right: Jan Dufek, Dr. Auke Ijspert, Dr. Kamilo Melo

I am proud to announce that Jan Dufek’s paper on using a small tethered Fotokite UAV to control the EMILY unmanned marine surface vehicle to rescue drowning immigrants won the best field paper award at the IEEE International Symposium on Safety Security and Rescue Robotics in Lausanne, Switzerland, last week. Jan is one of my Ph.D. students.  The paper was the preliminary work over the spring semester that is now funded by the National Science Foundation RAPID program.

Jan received 200 Euros

Jan received 200 Euros and his paper will be published as a journal article in Frontiers, a European conference.

More details about the conference are at, but there were over 100 attendees from 17 countries. IEEE SSRR is the only conference dedicated

More details about the conference are at, but there were over 100 attendees from 17 countries. IEEE SSRR is the only conference dedicated to robots for  homeland security and humanitarian operations. It was established in 2002, with Dr. Howie Choset (CMU) and myself as founding co-chairs.

It was pretty dark so the photo is poor. Jan is on the left with conference chairs Dr. Auke Ijspeert and Dr. Kamilo Melo.

Emergency Managers Find Small Unmanned Aerial Systems Effective for Flooding and Popular With Residents

A paper to be presented next week at the IEEE International Symposium on Safety Security and Rescue Robotics in Lausanne, Switzerland, details the use of small unmanned aerial systems in two recent Texas floods in Fort Bend County, a major Houston suburb and 10th largest populated county in Texas. The 21 flights over four days provided flood mapping and projection of impacts, helping the county prepare and respond to the floods. Surprisingly, the flights did not encounter public resistance and the videos became a popular and useful asset for informing the county residents as to the state of the flooding. A pre-print is available here.

The small unmanned aerial systems were deployed through the Roboticists Without Borders program of the Texas A&M Engineering Experiment Station Center for Robot-Assisted Search and Rescue for two flood events in April and May 2016. Both events were presidential declared disasters.  Experts from DataWing Global, CartoFusion Technologies, USAA, and Texas A&M embedded with the Fort Bend County Office of Emergency Management and the Fort Bend County Drainage District to fly low-cost DJI Phantoms and Inspires. The flights provided flood assessment including flood mapping and projection of impact in order to plan for emergency services and verification of flood inundation models, providing justification for future publicly accountable decisions on land use, development, and roads.

The paper, titled Two Case Studies and Gaps Analysis of Flood Assessment for Emergency Management with Small Unmanned Aerial Systems by Murphy,  Dufek, Sarmiento, Wilde, Xiao, Braun, Mullen, Smith, Allred, Adams, Wright, and Gingrich, documents the successful use of the small unmanned aerial systems for the two. It discusses the best practices that emerged but also identifies gaps in informatics, manpower, human-robot interaction, and cost-benefit analysis.

The annual IEEE International Symposium on Safety Security and Rescue Robotics was established in 2002 by the IEEE Robotics and Automation Society. It is the only conference dedicated to the use of ground, aerial, and marine robots for public safety applications. It typically attracts 60-150 researchers, industrialists, and agency representatives from North America, Europe, and Asia. This year’s conference will be held at Lausanne, Switzerland, see for more information about the conference.

The TEES Center for Robot-Assisted Search and Rescue is the leader in documenting, deploying, and facilitating technology transfer of unmanned systems for disasters. It has inserted robots or advised on the use of robots at over two dozen events in 5 countries, starting with the 9/11 World Trade Center and including Hurricane Katrina and the Fukushima Daiichi nuclear accident.

For more information contact:


Justin Adams, US Datawing and UAS lead for Roboticists Without Borders, , 832.653.1057

Dr. Robin Murphy, director for the Center for Robot-Assisted Search and Rescue,, 813.503.9881

For Hurricane Matthew: Quick Guide For Agencies Flying small Unmanned Aerial Systems (SUAS) for Emergencies

The illustrated version in pdf is here.

This quick guide is aimed at helping emergency managers quickly determine how they can exploit small unmanned aerial systems (like quadcopters).  The guide covers our best understanding of who can fly?  where can they fly?, and  any additional considerations in planning. Our best practices series has other documents on what kind of data you can expect to get, flight duration, etc., but this guide is about how the new regulations impact emergency managers. It is based on our SUAS deployments since 2005 and lessons learned from deployments by our colleagues.




If members of your agency own a small UAS or have friends with a small UAS, they cannot fly at the disaster- even if they aren’t asking for money. The FAA has repeatedly ruled that a) disasters are a business or government activity and  b) if the UAV flight is a donation to a business or government, it is the same thing as if the business or government agency flew directly.


Therefore, the only people/companies who can fly are those with a:

  • Part 107 license. The license is new and many people/companies don’t have these yet.
  • 333 exemption. Essentially a business license versus of the COA. Many hobbyist declared themselves a company to get a 333.
  • COA. Essentially a government or academic license.


Your agency does not have to have the 107, 333, or COA– just formally invite the group to fly on your behalf. If the group has one of the above, there are three important caveats.


1. Controlled airspace. They can fly at a disaster in uncontrolled airspace, but will need special permissions for controlled airspace. Keep in mind, many densely populated areas will be in controlled airspace.


2.  They have to obey all the flight restrictions for their license, including Temporary Flight Restrictions. Getting permission to fly under a Temporary Flight Restriction does not give them permission to change up the rules, it only means that they are now coordinated with the rest of the air traffic who will expect them to obey the same rules as in normal flights.


3. 24 hour notifications before flights may be required.  If the group is flying under a 333 or COA, they have to post an online notice of intention to fly in a specific area, called a NOTAM, 24 hours in advance. So if you think you are going to have a group fly, have them declare as soon as you know. There is no downside to filing a NOTAM and then not flying.





For planning purposes there are 3 types of airspaces: uncontrolled, controlled, and TFRUncontrolled means they can fly anywhere that is not controlled according to their license. TFR was covered above. That leaves the controlled airspace.


You can quickly determine if an area you want a group to fly in is in controlled airspace by going to:


and enter the nearest town, then click the appropriate boxes.  What is “Controlled airspace” and what you have to do to get permission to fly in it will depend on whether the group has a) a Part 107 license or b) a 333 exemption or COA.


a. Determining Part 107 controlled airspace.  If the group has a 107, click on the menu on the left that says Controlled Airspace and “all”. You will get something like this:





Anything in shade means that it is controlled airspace. This means that they can fly only IF they have an airspace authorization that they have applied for in advance online and gotten approval. Note: the FAA system is backlogged by weeks, so for Matthew, this may not make possible to get approval fast enough.


b. Determining 333 or COA airspace.


Clear airmap and instead click on “blanket COA”. You should get something like this:




Any area in orange means that the airspace is off limits without additional permissions- no matter what altitude you are flying at.  The controlled airspace is due to airports. A local group may already have permission to fly in those areas, but may not. If not, permission to fly in controlled airspace on short notice is handled through an Emergency COA, also called ECOA, process. The process takes about 1 hour to get through the FAA- assuming you have the GPS coordinates of where you want to fly, the COA number, etc.


The key is that the tower has to approve the flights (actually the approve the process of letting them know where you’re flying, when you take off, land, etc.) and the FAA has to agree to the temporary extension of the current license.


  • Note about 333 exemption. ECOAs are granted only to businesses or agencies, not individuals doing business as. Too many quasi-hobbyists were trying to fly at disasters without working with a response agency.





There are three considerations:


  • Data. The data (images, video) really belongs to your agency and needs to be handled as such. It may have personal identifying information. Some groups may routinely post videos and images to the web or tweet, which might not be appropriate. Therefore, you may want to make clear what the data management policies are applicable to flights on your behalf.


  • Privacy, state laws, or other regulations plus the public perception.  There may be state or local rules that impact the use of SUAS. Regardless, if you have a group flying SUAS for disasters, the residents will need to be aware that they are legitimate- plus the teams will be magnets for residents asking for help or assistance. So you will probably want to plan to have an agency representative in uniform or vest with the team.


  • Some SUAS may be software disabled from flying in TFR areas. DJI Phantom 3 and Inspires, which are very common, are now disabled by the manufacturer when a TFR is in place. So that may be something to discuss with your SUAS team.  DJI does have a procedure that allows agencies to override the software and fly up to 1.5 nautical miles from an airport, trusting the group to have obtained permissions.

Unmanned Systems and Hurricane Matthew: Lessons from 2010 Haiti Earthquake

As Hurricane Matthew approaches Haiti, it is hard not to think of the terrible devastation from the 2010 earthquake. The Haiti earthquake taught us some valuable lessons about the use of unmanned systems for the initial response to a disaster- that 0-24 hour period where emergency managers are trying to get an accurate assessment of the scope of the disaster and how to allocate resources to save lives immediately and mitigate any dangers, and to set in motion the plans and resources needed to protect lives and quality of life for the longer term. One key lesson is that bigger is better, at least for the initial aerial assessment. Another is to not forget about unmanned marine systems. These two lessons show up in other events such as other hurricanes and tsunamis. A lesson that did not come out of Haiti was that the effective use of unmanned systems in the 0-24 hour time period depends on communications. UAVs generate terabytes of imagery that are difficult to upload to the Cloud or file transfer/email to others.


In terms of unmanned aerial vehicles, Haiti makes an interesting case study. The Haitian government quickly put out an aviation notice that UAVs were prohibited. Period. That actually made sense given that there would be a lot of helicopters working at low altitudes, general air traffic control was complex enough, and that UAV coordination with air traffic control was still being worked out (and as of 2016, it’s not 100% resolved to this day). What was interesting was that the US Government put up a Global Hawk (see Peterson, Handbook of Surveillance Technologies, 3rd Edition) which provided aerial assessments of the extent of the damage without entering the Haitian airspace and two weeks later Predators were being used and coordinated with manned air traffic (see While on one Snowden-we-are-being-watched level, this may be disturbing to have drones able to see into other countries without violating airspace, on another it is wonderful. Emergency workers can get data without having to totally rework how multiple government agencies coordinate. The most important aspect of the use of military drones is that it illustrates that agencies need higher altitude, longer persistence UAVs geographically distributed disasters, in order to get the rapid coverage of damage (area X needs help) and state of the infrastructure (what is the best route to get resources there?). As we have seen with flooding in the US (we have a paper about to come out on this), small hobbyist-styles of UAVs are like flashlights illuminating small patches, while military drones are stadium lighting. Of course, big drones or Civil Air Patrol assets may not be available. This leads to the questions as to whether small hobbyists quadcopters can contribute, how to aggregate the data from hobbyists and send it (especially under low bandwidth conditions), and how can agencies handle the volumes of data and trust the data they are getting. These are some of the issues raised in my article at


The second lesson from Haiti in terms of unmanned systems is to not forget the value of unmanned marine vehicles. If the hurricane brings intensive flooding or high storm surges, then the underwater portions of the critical infrastructure are at risk. This means bridges (I’ll never forget crossing the bridge into Punta Gorda for Hurricane Charley and the team being told not to stop on the bridge because there was not way to know how safe the bridge was). Bridges are important but also ports and shipping channels. It also mean pipelines, which can be leaking and affecting the environment, and telecommunications (the 2015 Texas Memorial Day floods washed away the bridge and the telephone lines to Wemberly). In Haiti, the state of the ship channel was unknown (had any depths changed?) as was the over port (could it take the weight of cargo being unloaded onto the docks?). The traditional approach has been to use divers, but in Haiti, the Navy and Army MDSU 2 team used SeaBotix ROVs to speed up the assessment as noted in Disaster Robotics (


Disaster Robotics has more information about unmanned systems at the 2010 Haitian earthquake.

The Legacy of 9/11 for Disaster Robotics

YouTube Preview Image
I’ll be speaking at the Smithsonian Museum of American History today as part of the 15th Anniversary of 9/11 event. 9/11 was the first reported use of robots for search and rescue and created a legacy that continues to grow for both disaster response and for science and technology. The robots were successful by any standard for rating search and rescue tools- improved performance over existing tools, frequency of use, and acceptance by professionals. They didn’t find any survivors, but neither did anyone else as there were sadly no survivors to find.
I will never forget my time at the World Trade Center as a responder, a scientist, or as a person. The infinite sadness of such an event still haunts me. The Seamus Heaney poem I read in the NYT and quoted in my IAAI talk:
And we all knew one thing by being there.
The space we stood around had been emptied
Into us to keep, it penetrated
Clearances that suddenly stood open.
High cries were felled and a pure change happened.
I believe the many members of the CRASAR team at the World Trade Center and since have kept the memories and have enabled a pure change- as witnessed by the use of robots at at least 50 disasters worldwide. While the robots are a very small story among the amazing stories of loss and triumph, I am proud to tell the story and add to the history of how 9/11  has made waves and ripples in history.

Legacy for Disaster Robotics

9/11 was an existence proof that small robots could be of significant use searching in rubble, reaching places that people and dogs could not, and penetrating two to three times farther than cameras on poles, which were the nearest similar tool. Large heavy robots had been developed for bomb squads but they were too big and heavy to be used in rubble, as seen at the Oklahoma City bombing. Red Whitaker at CMU had built even larger and heavier robots for Chernobyl and Three Mile Island nuclear accidents for the recovery operations, not for immediate search and rescue.


Small robots, ranging in size from a shoe box to a carry-on suitcase, that could be carried in one or two backpacks, had been under development by the pipeline and sewer inspection industry and the DARPA Tactical Mobile Robots program directed by John Blitch, the founding director of CRASAR.  If you look at the DARPA TMR logo you see that there is the “urban terrain” of cities but also a rubble pile, because John was thinking of dual use. He had been at the Oklahoma City bombing and had changed his MS thesis topics to robots for disasters (I was his co-advisor).


The robots were used starting shortly after midnight on 9/12 through 9/21 for search and rescue by FDNY, INTF1, OHTF1, PATF1,  and VATF1 and then again from 9/23 through 10/2 for recovery operations (structural inspection of the slurry wall) by the NY Department of Design and Construction when the last robot on site wore out.


By my count, robots have been used in 49 disasters since then in 17 countries. 24 of those disasters used UGVs- with the majority using the robot models from 9/11: Inuktuns (ex. mine disasters, building collapses), Packbots (ex. Christchurch for searching the cathedral, Fukushima Daiichi), and Talons (ex. Fukushima Daiichi). See Disaster Robotics for more details.

Legacy for Robotics

9/11 created a legacy for robotics in two ways. Search and rescue is often cited as a motivation for new advances in robotics; if you’re a doctor, you often say you want to solve cancer, if you’re a roboticist you often say you want to help with search and rescue.
One is that it created a new subfield of robotics. The IEEE Robotics and Automation Society, the largest and most prestigious professional organization devoted to robotics, has a technical committee on Safety Security and Rescue Robotics with an annual international symposium that started in 2002 (I was a co-founder of the TC and symposium). Both the European Union and Japan are investing heavily in small disaster robots- including sensors and user interfaces- with multiple projects being funded at the $20M to $35M range (the US doesn’t have dedicated programs for funding robotics projects at that level). The SSRR field now includes UAVs, UMVs, and many innovations in ground robots that can crawl and burrow into rubble.


9/11 also uncovered technical challenges that the R&D community is still struggling with. Probably the most significant discovery was that remote presence, or teleoperation, is actually the preferred mode of control for almost every response task- even with UAVs and UMVs.  Because the time pressure is so great and because disasters always have a surprise, the responders want to see in real-time what the robot is seeing and being able to opportunistically change up the plan (“wait— what’s that? Let’s look over there..”). Up until 9/11, researchers and developers had assumed that all robots should be taskable agents- you would tell it what to do, it would go off and do it, and then come back- and remote presence was just because we hadn’t created autonomous programs. Now there is the realization that many applications, not just search and rescue, require the human and robot to work together in a joint cognitive system to get the job done.


The second most significant discovery is what Jenny Burke would later describe in her PhD thesis as that 2 heads are 9 times better than 1. Up until 9/11, researchers and developers had assumed that 1 person could operate a robot successfully and thus the real challenge was for 1 person to drive 2 or more robots. We had had signs prior to 9/11 that 1 person couldn’t drive a robot in rubble and look at the same time-as one of my grad students who later went with us to 9/11, Jenn Casper, documented, they could do it but they could literally roll past a victim in front of the robot (we started seeing this in exercises with FLTF3 in buildings that were being demolished). The cognitive challenges of thinking like a ferret or meerkat (the size of the robot) were bigger than anyone had expected and then rubble is deconstructed and hard to mentally sort out. 2 heads makes sense in a way- if you are in a new town driving around in traffic and looking for a particular address you’ve never been to, it helps to have a passenger in the car who is looking too.


Italian Earthquake: Recommendations for using ground and aerial robots for immediate lifesaving

Our thoughts and prayers go out to the Italian people impacted by the earthquake. We’ve reached out to colleagues in Italy in case any of us here can be of assistance. Below is a general overview of what might be useful and why.

From the scanty news reports in the US, my guess is that this event will favor the use of small tethered ground robots for locating survivors in rubble based on the case studies from 9/11 World Trade Center, Cologne Archives collapse, Berkman Plaza collapse Prospect Towers collapse, L’aquila earthquake, Mirandola earthquake, and multiple mine disasters worldwide (see Disaster Robotics, MIT Press, 2014 for those case studies). UAVs may be of value in estimating extent, ascertaining whether roads are open or can be easily cleared to allow responders rapid access, and general damage assessment and recovery operations (as per Nepal and Chile), but probably not for direct life saving- though I could be wrong.

“Small”  as in pipe inspection robots- not a bomb squad robot like the Packbots used at Fukushima- because if a person or dog could get into a void to reach a trapped person, they probably would despite the personal risk. A tether is useful because it solves wireless and power problems- but more importantly any entry would likely be from the top of the structure or the upper parts, so the robot has to rappel down.

A video camera, color, is essential. Thermal cameras may be of use initially but are very hard to use for navigation in confined spaces. So I wouldn’t recommend thermal by itself, rather as a second camera. The value of a thermal camera goes away after a few days because decomposing bodies present a heat signature. Navigation gets harder as small protrusion become the same temperature as the surroundings.

A robot with 2-way audio will be valuable because the operator can call out and listen for sounds of survivors, then medical experts can talk with the victims. But even just a speaker or a microphone by itself can be useful.

Should someone find a survivor, a small tube can be attached to the robot to provide water to a trapped victim- hook up the end to an aquarium or koi pond pump. (This is a great solution worked out by Eric Rasmussen and we tested with the USMC CBIRF unite.) The robot can probably maneuver and bring a small payloads- a radio, a space blanket, power bars (assuming they aren’t severely injured). LACoFD does so many confined space rescues, they can have a kit the size of a Pringles can for trying to give to people trapped in caves and culverts.

Japanese earthquake: how ground, aerial, and marine robots could be used for response

We have been watching with distress the earthquake in Japan and offered any assistance we could provide- however, the first 48 hours are critical for life saving. The International Rescue System Institute (Tokoku University) and the Center for Robot-Assisted Search and Rescue (Texas A&M University)  are the only two centers devoted to disaster robotics, and we work together, so there is considerable expertise available in Japan.

See below for how ground, aerial, and marine robots can be used and best practices are on the home page. Disaster Robotics has 34 case studies worldwide of how these robots have been used at previous earthquakes and disasters through 2013.

I’ll be adding photos and video as I get a chance– this weekend is Aggies Invent: First Responders that we are sponsoring and have two exciting projects based on CRASAR identified (there are 12 others submitted by other response agencies).

Ground robots for locating survivors inside the rubble and speeding up extrication.

Canines typically find survivors but can’t precisely locate where the survivors. Plus dogs can’t provide the “inside view” of the pile of pixie sticks that the extrication team has to be careful not to disturb.  People and canines often can’t get into the rubble because there is often not even a person or dog sized hole that goes all the way from the surface to the interior. Existing boroscopes and cameras on wands can reach about 18 feet or 6 meters into the pile, which means standard US&R equipment is sufficient for single family homes but not apartment buildings or multi-story commercial buildings which are bigger and deeper.

In those case small robots, the size of a lunchbox or smaller, have been used since 2001 (CRASAR at the 9/11 World Trade Center) in go further inside the rubble to where survivors might be and providing the “two for one” of letting the structural specialist visualize how to best remove the rubble to extract. Dr. Tadokoro’s group has one of my favorite small robots, the Active Scope Camera,  that we used together at the Jacksonville Berkman Plaza II collapse. It’s a 6 meter long “caterpillar” robot that can fit in 5cm voids.
Big robots like those used at Fukushima are less valuable because the voids are smaller and the robots can’t move rubble without risking triggering a secondary collapse that will kill the survivors.

UAVs for general reconnaissance and structural inspection.

UAVs have been used since 2005 for disaster response (yes, starting with CRASAR at Hurricane Katrina). The most common uses have been small UAVs for general reconnaissance and for structural inspection. With photogrammetrics, small UAVs are providing geospatial data that are of value to the geologists and public works groups trying to prevent floods, slides, and further collapses. In general, small UAVs are used more frequently because formal responders like the police or fire rescue have access to helicopters and planes. In more remote areas there may be less coverage, so local assets are important. See best practices for UAVs.
One important lesson from the 3/11 earthquake was that the number 1 place to check to see if it was ok and functioning is a hospital!

UMVs for critical underwater infrastructure inspection and reopening ports.

Unmanned marine vehicles, especially ROVs and miniature boats, have been used since 2005 to inspect bridges and reopen ports immediately after an earthquake so that responders can gain access to the affected areas AND get supplies to the hard hit areas. The value of UMVs extends well into the recovery period, both for inspection but also help remap fishing and shipping

NRP All Things Considered: New Robot System Helps Migrants Cross The Mediterranean Safely