Lessons Learned: Deploying UAVs for Volcano Eruption Response

Lessons Learned: Deploying UAVs for Volcano Eruption Response

Posted by Joan Quintana on Jun 11, 2018 at 10:30 pm America/Chicago

Having recently supported the response to Hawaii volcano eruption at Kilauea Volcano Lower East Rift Zone, we offer the following insights and lessons learned regarding use of UAVs for volcano eruption response.

Night flights of UAVs are very effective.

Manned aviation generally cannot fly at night, meaning responders are essentially blind for 8-12 hours. But UAVs can fly at night. There are no challenges coordinating with manned aircraft since they are not flying, and it is easier to keep the UAV in visible line of sight.

Rotorcraft UAVs can effectively sample gas.

We used the Flymotion stinger attachment to carry a four-gas meter and map the Kilauea plume. Caution: If your UAV isn’t designed for attaching payloads, it may be unstable and crash.

Rotorcraft UAVs with thermal sensors are very effective.

Rotorcraft UAVs with thermal sensors are particularly effectivefor determining new lava flows from old flows and for seeing at night. We found the DJI Zenmuse XT2 to be particularly useful. It produces radiometric jpgs where the pixel value is the temperature.

Rotorcraft UAVs provide a quick look at lava flow rates.

Rotorcraft UAVs provide a quick means of determining how fast lava is moving. Fly the UAV with a nadir view to the edge of the lava, get the GPS coordinate, repeat in a few minutes, do the math.

Plumes will interfere with photogrammetric mapping.

Plumes will interfere with photogrammetric mapping. Expect errors, lower visibility, and failed stitches.

Hanger 360 rapidly produced panoramas.

Hanger 360 rapidly produced panoramas without flying over property or people. Even better, the panorama resides in the web so responders don’t have to have download apps or have a special mouse to move through the image. And, they can easily email or text url to others.

Our Sponsors