Washington State Mudslides Highlight Challenges for Ground and Aerial Rescue Robots

All of our thoughts and prayers go out to the victims, families, and responders. 

I am already being asked about how robots could be used for the horrific mudslides in Washington State. 

To the best of my knowledge, robots have been used only once for a mudslide. That was the CRASAR deployment in 2005 for the La Conchita, California, mudslides which provided unmanned ground vehicles at the request of Ventura County Fire Rescue and Los Angeles County Fire Rescue. Direct victims of mudslides and avalanches rarely have survivors because the ground and snow acts like a fluid displaying the oxygen, leading to suffocation. Victims of collateral damage have a better chance of survivor. CRASAR was called in to help search the crushed houses for missing neighbors; as detailed in Disaster Robotics, the small ground robots didn’t get far in the gooey mud. 

A major challenge for a slide or avalanche is that the robot needs to burrow through a “granular space.” Instead of going through a hole where the hole is at least as big as the robot, the robot needs to go through a space where the holes are smaller than the robot. There’s some interesting research that Dan Goldberg at Georgia Tech, Howie Choset at CMU and I have proposed on exploiting Dan’s work with robots that mimic sandfish, Howie’s miniature snakes for granular spaces but we’ve yet to hit on funding. 

Small UAVs could play a beneficial role. Certainly having the first responder on the scene driving down the road to the slide could able to get a quick overview of how far it extended. At La Conchita we had seen the possibility of small UAS dropping sensors in the slide that could be remotely monitored rather than sending geologists to periodically climb up the slide to make measurements. 

However, the pictures in the news of manned helicopters to airlift out survivors illustrates why air space coordination is a disaster remains a must and why civilians robot enthusiasts shouldn’t fly without permission, like the person filming the Harlem building collapse. The manned helicopters are working in the same under 400ft elevation that many small UAS companies advertise that their systems work in. It is important to remember that if a civilian flies in the airspace over a disaster, their AMA insurance is void (assuming they have insurance) and  regardless they may be subject to legal action. Worse yet, a manned helicopter conducting an airlift has to abort the mission if an unaccounted for vehicle enters their area of operation and thus could cost a victim their life. 

East Harlem Building Collapse: role of ground robots

It doesn’t appear that small ground rescue robots are being used to assist in the search and rescue of the terrible East Harlem building collapses-if you know of any being used please let me know. We offered our robots to DHS the same day and also New Jersey Task Force 1 and the New Jersey UASI team have small robots that they used in the 2010 Prospect Towers parking garage collapse. All of our thoughts and prayers go out to the families of the 7 victims and missing- as well as to the responders working their way through this disaster.

Ground robots have been used  8 times between 2001 and 2013 for search and rescue in structural collapses- crawling underground in building collapses and mine disasters since the 9/11 World Trade Center collapse.  For building collapses shoeboxed sized robots such as the Inuktun VGTV are a popular choice because that are small and the power/communications tether serves as a belay line for lowering the robot. Ground robot have video cameras but can often be outfitted with a thermal camera. The thermal camera is useful for looking for heat signatures of possible survivors and also smoldering fires or live electrical outlets. A robot typically needs both because thermal radiation produces a fuzzy image, not always good for navigation or for structural assessment. We’ve often velcro-ed a thermal camera to a robot and run a separate tether.

Gas leaks are similar to mine explosions in that there is a worry as to whether the electronics of the robots will set off another explosion. The is referred to as whether the robot is “intrinsically safe.” There are different standards for intrinsically safe depending on the industry so that makes it harder for a robotics company to create a certified explosion proof robot.  I know of only one robot that is certified as intrinsically safe- the Mine Safety and Health Administrations very large “sumo” V2 robot, a variant of the Remotec Wolverine.