VOLUNTEER RESPONDERS USE ROBOTS AND NEW MAPPING TECHNOLOGIES TO SAVE LIVES AND PROPERTY IN HAWAII VOLCANO ERUPTION

FOR IMMEDIATE RELEASE

June 11, 2018

CONTACT:

Joan Quintana
email: press@crasar.org
phone: 979-324-2247

VOLUNTEER RESPONDERS USE ROBOTS AND NEW MAPPING TECHNOLOGIES TO SAVE LIVES AND PROPERTY IN HAWAII VOLCANO ERUPTION

A team of five volunteers armed with drones, advanced sensor systems, and GIS technologies joined the response effort at Kilauea Volcano Lower East Rift Zone to assist in tracking and predicting the on-going volcanic eruption. Using small unmanned aerial systems (sUAS) together with air-quality sensors, advanced imaging tools, and Esri’s spatial analytics and mapping, the team from the Center for Robot-Assisted Search and Rescue (CRASAR) provided real-time aerial views of the eruption. The CRASAR team identified a new fissure not visible from the ground, projected the lava flow rate during the night when manned helicopters were not allowed to fly, and provided ongoing data collection from new thermal sensors technology. The CRASAR response marks the first known use of sUAS for emergency response to a volcanic eruption and first known use of sUAS for sampling air quality. The CRASAR team provided Hilo Fire Department and the Civil Defense with live streaming of video from the sUAS over the new FirstNet cellular network.

“This latest CRASAR mission is another example of dedicated volunteers working together with private sector partners to deploy technology to save lives and property when disaster strikes,” said CRASAR Director and disaster robotics expert Dr. Robin Murphy. “With support from technology partners like Esri, Hangar Technologies, RemoteGeo and RMUS, we are able to both respond to active disasters but also demonstrate to the first responder community best practices and benefits of engaging robots and other technologies in disaster response.”

CRASAR supported tactical response operations at the Leilani, Hawaii eruption event from May 14-19, 2018, supplementing the University of Hawaii Hilo’s (UHH) sUAS capabilities and allowing UHH sUAS operators to focus on geographical and volcanology. The CRASAR response team included sUAS pilots Justin Adams of Constellation Consulting Group, David Merrick and Laura Hart of Florida State University Center for Disaster Risk Policy, Jon McBride of Rocky Mountain Unmanned Systems, and Robin Murphy of Texas A&M University. Funding was provided in part through research grants from an insurance partner and the National Science Foundation.

During the six-day Leilani deployment, the CRASAR team flew 44 sUAS flights, including 16 at night, using DJI 200, 210, Inspire, and Mavic Pro drones. Esri’s Drone2Map for ArcGIS together with Hangar’s Enterprise Platform for 360-degree imaging enabled rapid 360-imaging for situational awareness. DJI’s new XT2 thermal sensor provided unprecedented drone-based air-quality monitoring. Video and data were shared with local first responders using FirstNet, the first high-speed, nationwide wireless broadband network dedicated to public safety.

“This eruption is especially impactful because of its location,” said Esri’s Public Safety Lead, Ryan Lanclos. “That makes the CRASAR’s use of drones and mapping technologies, and the near real-time situational awareness it provides of people, homes, businesses, and infrastructure during this disaster, a resource first responders will be able to turn to time and again.”

CRASAR’s deployment to Hawaii marked a number of firsts for technology applied to disaster response. To interact with the same GIS mapping and imaging technologies responders used on the scene at Kilauea Volcano Lower East Rift Zone, visit http://bit.ly/CRASARhawaii.

ABOUT CRASAR

CRASAR is a nonprofit corporation organized to foster unmanned systems being effectively used by formal emergency management agencies through voluntary national and international activities that deploy, promote, train, document, analyze, and disseminate scientific knowledge.
http://crasar.org/ CRASAR was established in 2001 and has provided unmanned systems and expertise to 29 disasters in 5 countries including the 9/11 World Trade, Hurricane Katrina, Fukushima Daiichi Nuclear Accident, and Hurricane’s Harvey, Irma and Maria. It was recently part of the Texas A&M Engineering Experiment Station but has spun off as a nonprofit.

###

Beyond Asimov; The Three Laws of Responsible Robotics

IEEE Intelligent Systems just printed our (David Woods, OSU, and my) article about “Beyond Asimov: The Three Laws of Responsible Robotics” and put “Beyond Asimov” as one of the articles on the cover… and the hate mail has started!

So what does Asimov and his Three Laws of Robotics have to do with rescue robotics? The Three Laws are being taken seriously as a framework for discussing human-robot interaction. Rescue robotics has humans behind the robot and humans in front of the robot- it’s about as human-centric as you can get. I became one of the early drivers of the human-robot interaction community (I co-chaired the seminal 2001 DARPA/NSF study) precisely because I found through my fieldwork that the poor interaction was the limiting factor. No matter how bad the rescue robots were in terms of locomotion, communications, sensing- the horrible mismatch between the robots and the human cognitive abilities for the environment was the limiting factor. It isn’t just interfaces, it is the set of fundamentally, pervasively wrong assumptions about how people interact with robots.

Whenever I hear some grad student talking about wanting to design robots which meet Asimov’s Three Laws and thereby provide perfect human-robot interaction I get ill. One year I heard a researcher telling the press that their robot met the First Law of Robotics (a robot may not injure a human) because it was able to avoid people. Except that it was simply avoiding heat sources and people happen to be warm.

To say AI researchers tend to be technological optimists is an understatement.

The paper came about when I began to read Moral Machines (David texted me that I had to stop whatever it was I was doing and go read it now, he was so put out by the book). I next-day-ed the book, and between that and the Living Safely with Robots tome, shouted “enough with the Asimov’s Laws already as some sort of gold standard for robot ethics. It was a literary device. Let it go!” My family tends to find things to do away from the house at time like that. I thought the Moral Machines actually made a strong, though unintentional, argument for why Asimov would get sued if he were a robot manufacturer.

So I whipped up a draft on alternative laws one Saturday morning. Leila Takayama and Victoria Groom from Cliff Nass’ group at Stanford read it, make great suggestions, and included in their HRI workshop. I sent it to David to read and he came back with excellent ideas, tons of experiences and examples of how autonomy and automation fails, and way better prose. I insisted that we stay with three laws and that they had to be symmetric with Asimov’s– sticking with literary convention to make a point. I agree with David, if you really want laws, it’d be better to start over. Anyway, we put a version in an IEEE ICRA workshop (thanks Cindy for presenting!) and continued to refine. We ran it past Robert Hoffman who saw the possibilities of getting a more informed discussion going and after a rapid edit cycle and a discussion with Jeff Bradshaw, it’s in print. (I’m sharing names in a Good Way, please don’t go yell at them if you hate the paper.)

Hopefully, besides hate mail, we’ll get a real intellectual discussion going instead of extreme quotes in the media. AI robotics is capable of so many things, I hate to handicap true progress by adherence to a cute literary devices designed to create problems.