Haiti and Kobe, Japan

Haiti and Japan

Tomorrow is the anniversary of the 1995 Kobe Earthquake. The irony that I am in Kobe accepting the Motohiro Kisoi Award for Academic Contributions to rescue engineering instead of in Haiti does not escape me. There is always a gap between possibility and reality, but gaps about high definition TVs seem trivial compared to gaps in life saving and recovery.

Yesterday Ms. Ikuko Tanimura from the International Rescue Systems institute took me to the Hyogo Perfectural Emergency Management and Training Center and the full-scale earthquake testing facility at the National Research Institute for Earth Science and Disaster Prevention. Suffice it to say that the Japanese have the technology to shake entire 6 story buildings and bridges in three dimensions and understand collapses. Recently, they shook to pieces a wooden house and let the IRS researchers apply their technologies (I am so envious!) Dr. Akiko Yoshimura, an architect, designed a clever facility where teams can practice victim management in wet, confined spaces designed to tax the ergonomic constraints of responders. As I travel the world, I see so much good science, good ideas, good inventions!

The Japanese researchers from IRS are sanguine about progress and the time it takes to go from research to the field. IRS director Prof. Satoshi Tadokoro started what became IRS in 1995 in response to the Kobe earthquake and the loss of Motohiro Kisoi, a promising graduate student in his department. I also started in 1995, motivated by the Oklahoma City Bombing. The research directions Satoshi and I initiated back in those days are a little embarrassing in retrospect- we didn’t understand disasters and there was little data or experience base. Now as we’ve profited from being engaged in exercises and actual responses, being able to apply cognitive work analysis methods, and collect performance data on machines and people, the community is beginning to isolate and address more meaningful issues that will lead to truly useful technology that will be easy to use and maintain.

But as we discussed last night at the reception, good science isn’t sufficient to help a disaster like Haiti. We need industry to (cheaply) manufacture the devices, agencies and NGOs to accelerate adoption.

But what we really need are early adopters and caches all over the world, so that even it doesn’t take 3 days for response teams to bring in the sensors and robots (and comms and power), that the local responders can make the most of the critical 72 hours.

Haiti: Prayers and best wishes

The Haiti earthquake is looking grim. At this point CRASAR has not been contacted about assisting and is unlikely to be.  The two USAID teams, CA-TF2 and VA-TF1 , are being deployed. Reports suggest that there was a hospital collapse. In these large geographically distributed disasters, aerial assets (manned or unmanned) are helpful in establishing what is damaged, where people appear to be in the most danger or need, and whether roads are passable. Ground robots are helpful for large buildings, but, in general, dogs are the biggest help in finding victims in residential areas– dogs smell faster  much faster than the most agile robot can get in the rubble. Marine vehicles can be of value in inspecting sea walls and checking shipping channels. Let’s keep rooting for improvements to subsurface sensors and other equipment that can help the teams. Godspeed to CA-TF2 and VA-TF1! And all of Haiti is in our prayers!

Brazil Mudslide: rescue robots for mudslides

The sad news of the mudslide in Angra dos Reis, Brazil, brings up memories of our deployment to the 2005 La Conchita, California, mudslides. Rory Rehbeck, then a captain with LA County Fire Department, invited CRASAR out to assist Ventura County Fire Department. There really aren’t survivors of a mudslide- the mud is a liquid, penetrates like water, and covers everything. The best you can hope for is survivors from the collateral damage. The houses on the slope of La Conchita were either buried, squished as if inside a giant trash compacter, or untouched. We attempted to use the new Extreme robots we had purchased through a NSF grant to search some of the damaged houses as a family of 6 was still missing (they were on vacation) and the canines were giving some ambiguous hits.

Our journal article “Rescue robots for mudslides: A descriptive study of the 2005 La Conchita mudslide response” Journal of Field Robotics, vol 25 no 1-2 (Jan 2008) p 3-16  gives the details of what Sam Stover and I experienced: the robots did not do well in the mud and vegetation when we tried to go under a house to get in it nor work in deep shag carpeting when we entered another house through the garret window. See the Media Gallery for photos. But being there did identify the need for remote sensor networks dropped off by UAVs to continously monitor for further slides (geologists checking manually every 6-8 hours isn’t good enough)- sensor networks for advanced placement already exist, they just don’t get used. We’re looking forward to combining the UAV work here with Prof. Dez Song’s work in sensor networks.

The families in Brazil are in our prayers and hearts.

Robotics Rodeo at Ft. Hood

RIMG0149

RIMG0159

RIMG0149

I had the good fortune to attend the Robotics Rodeo at Ft. Hood last week- a rodeo of unmanned ground robotics hosted by U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) and Fort Hood III Corps (go Phantom Warriors!). A wonderful experience and many thanks to the CO Gen. Ricky Lynch (he has MS in robotics from MIT).

Some pictures are above and some thoughts about the commercialization of robotics…

According to a good friend, Bill Kearns, at the turn of the last century, there were over 200 car manufacturers in North America. (His family’s business was one of them.) Each manufacturer had something special, a starter motor, independent suspension, what have you. An amazing array of advances, some redundant, many brilliant.

But the problem was, they weren’t on the same car. Who wanted the latest, greatest engine on a car that you had to use with a hand crank?

Durant and Ford were credited with manufacturing but sometimes it is missed that they it wasn’t just that they mastered mass production, they mastered mass production of the right thing. They were among the first to view the cars as the sum of its parts. The superior technology of a component (usually invented by the owner) was not the reason for existence but rather a marketable feature of a desirable whole. As was stressed in one of my mechanical engineering courses, automobile companies are manufacturing companies, which make things for people to buy, not engineering companies, which create or investigate ideas for someone else to make into things for people to buy. Automotive companies at the turn of the century were really about engineering, not about the car. A similar pattern of scattered developments which were consolidated into systems happened in the aerospace industry.

The Robotics Rodeo reinforced my opinion that ground robotics is in the same state. Interesting pieces, some brilliant engineering, lots of duplication, and few useful systems.

One conclusion is that this is the Natural Order of Things and will sort itself out over time. This line of reasoning is: perhaps some duplication will result in lesser technologies occasionally trumping superior technologies and some dollars will be wasted. But this should be tolerated since the duplication and competition is usually efficient overall and reduces purchase prices, right? Besides, premature standards or regulations can kill off an emerging technology.

The Natural Order of Things philosophy has problems. In asymmetric warfare, do we have time or dare risk being beta-maxed by an adversary? And in days of trillion dollar deficits, will we be able to afford the cost of duplication? Remember, the government is subsidizing the UGV market (either through DoD or law enforcement) whereas automotive industry was private capital. There is no real consumer market for these devices. Is UGV development is in fact regulated by the invisible hand of capitalism or being de facto regulated by current defense acquisition processes. If so, is that a good or a bod thing? I don’t know…