I had the pleasure of attending the ICARUS project’s final demonstration in Brussels Belgium as an advisor. ICARUS is the European Union funded project “Integrated Components for Assisted Rescue and Unmanned Search operations” which you can read about at here. The demonstration was quite the success and the entire project has my greatest admiration!
Just a note to anyone wondering why the US is not doing more of this: the European Union funded the project at $17.5 M Euros, far more than any funding for robotics projects available through the National Science Foundation or the Department of Homeland Security. The great ICARUS team and the funding really helped them move the EU ahead of the US and Asia in robotics and in robotics for disasters. This is not the only project being funded at this level in the EU. NIFTY just finished up, TIRAMISU, CADDY, and SHERPA are all major projects focusing on fundamental research in robotics through applications to disasters. Each project has a strong partnership with an actual response agency or national US&R team, following the model that we use at CRASAR- and indeed that’s why I’m on the advisory board for most of these projects. This is a very different model than the DARPA Robotics Challenge in the US.
There were four aspects of the project that resonated with me:
- Engagement of the end-users, in this case, Belgium’s US&R team B-FAST, and emphasis on physical and operational fidelity. This is the major thrust of CRASAR. The engagement of end users led to them deploying their rotorcraft UAV for the Serbia-Bosnia floods, with an excellent set of lessons learned reported at IEEE Safety Security Rescue Robotics at http://tinyurl.com/ppr6c7b.
- Focus on heterogeneity of robots. The project demonstrated land, aerial, and marine robots complementing each other to provide responders with more capabilities to see and act at a distance. The July demo showed Aerial-Marine cooperation and this, the September demo, focused on Aerial-Ground cooperation. Heterogeneous robots are not a new topic, nor a new topic for disasters (see our work at the Japanese tsunami http://onlinelibrary.wiley.com/doi/10.1002/rob.21435/abstract) but ICARUS advanced the field by showing interoperability of control of the robots. Arguably, interoperability is not new and something the US Department of Defense is pursuing but it was nice to see, especially combined with heterogeneity of missions.
- Heterogeneity of missions. Perhaps the most compelling part of the demo was the how robots could be repurposed for different missions and how the interoperability framework supported this. A large robot for removing rubble could change its end effector and carry a smaller robot and lift it to the roof of a compromised building. The displays showed the payloads and types of functions each robot could do- this visualization was a nice advance.
- One size does not fit all. It was music to my ears to hear Geert DeCubber say that there is not a single robot that will work for all missions. I’ve been working on categorizing missions and the environmental constraints (e.g., how small does a robot need to be), with the initial taxonomy in Disaster Robotics https://mitpress.mit.edu/books/disaster-robotics)
The project focused on Interoperability between the assets, which was interesting technologically but I wonder if it will be of practical importance beyond what would be used by a single US&R team- assuming that a single US&R team would own a complete set of ground, aerial, and marine vehicles.
Our experience has been that a single agency or ESF is unlikely to own all the robotic assets. For example at the Fukushima Daiichi nuclear accident, several different types of ground robots and an aerial robot were simultaneously deployed. It didn’t make sense for a single operator to be able to control the devices— with a UGV outside the building clearing rubble, a UGV inside inserting a sensor, and a UAV outside conducting a radiological survey- these seem to be delegated functionality and better kept as separate modules. Furthermore, many of the devices were brought in for the disaster, that the best available was deployed rather than existing JAEA, so there is always the issue of how to incorporate the latest tool.
Even in a relatively small disaster, such as the Prospect Towers parking garage collapse, New Jersey Task Force 1 borrowed ground robots from a law enforcement agency. The point is that for the next decade, teams may be using ad hoc assemblies of robots, not owning a dedicated set of assets.
For CRASAR, the challenge is how the different end-users get the right information from the ad hoc assembly of robotics fast enough to make better decisions.
The project had a host of commendable technical innovations, such as showing a small solar power fixed-wing that operated for 81 hours endurance and provided a wireless network for the responders, a novel stereo sensor for the tiny Astec Firefly which they showed flying in through a window, and an exoskeleton controller for a robot arm which is being commercialized.
I particularly liked the ICARUS focus on establishing useful mission protocols. They experimented with launching a fixed wing immediately to do recon and wireless and provide overwatch of the camp and with using a quadrotor to fly ahead of convoy and try to ascertain the best route to the destination when roads might be blocked with rubble or trees.