Nepal: recommendations for small UAVs

As the tragedy in Nepal unfolds, the immediate rescue response has ended and now efforts are shifting to agencies working on the mitigation of the event and dealing with continuing cascade of consequences and hopefully to recovery as well as humanitarian relief.  We have not been asked to participate and cannot self deploy but to those planning to fly small UAVs, I recommend that you look over the range of uses of small UAVs in the past 8 earthquakes in the past blog (and in more detail in Disaster Robotics). Plus:

  • Be aware that the altitude may change the performance of your platform
  • Working in complex terrains such as mountains will impact any preplanned paths. We have found that imagery reconstructions from fixed-wings will do better with a series of flights “stair stepping” along a hill or mountain than trying to cover the entire area at one altitude. Also a flight at one altitude may violate any flight AGL restrictions because to be high enough to fly at the top of the mountain, you’ve almost certainly exceeded the AGL limits for the lowest part of the terrain. We have found that rotorcraft flight plans work better as a set of vertical planes.
  • If you are planning to conduct structural inspection missions, you will most likely need to fly with 3-10m of the structure. Be aware that this creates wind effects and can interfere with GPS and wireless connectivity. Also, our research with civil engineers indicates that no matter how much video or photos we try to take, having a specialist who knows exactly what to look for is critical.
  • Expect engineers and structural specialists to use the raw images. Our studies at Disaster City indicate that orthomosaics do not accurately show straight edges on buildings and have a slight bit of ghosting, regardless if from fixed or rotorcraft.
  • Be aware that the country may have a temporary flight restriction in order to protect manned helicopters working at low altitudes in the area- that applies to anything that flies, there are no hobbyist exemptions. The normal procedure is for ANY aircraft, manned or unmanned, to coordinate with the air traffic control so that the manned helicopters can continue to operate. Regardless, manned systems cannot see small UAVs and thus cannot avoid. Should they see a small UAV operating and are not briefed, they typically have to return to base because of the possibility of a collision. Sending someone to the Air Branch of the incident command can go a long way to making sure ad hoc flights don’t accidentally interrupt other activities.

 

Nepal: disaster robots and earthquakes- history and uses

Our thoughts and prayers to the victims, families, and responders in Nepal where CNN is reporting over 777 people killed. Here is some information about how disaster robots have and can be used.

Uses: the primary use of disaster robots in 8 previous earthquakes have been to give authorities and experts rapid understanding of the damage and general situation, the state of the infrastructure – especially underwater portions of bridges and ports which is key for transportation of responders and supplies, and the state of building collapses- especially where there is the indication of survivors or where the building must be inspected by experts but it appears to be too unsafe to inspect.

History: Small unmanned systems have been reported for use in response and mitigation of 8 earthquakes. The first reported use in 2004- an experimental ground robot from IRS exploring a house in the Niigati Chuestsu (Japan) earthquake with the Japanese equivalent of FEMA. In 2009 a small UAV was deployed in Italy by La Sapienza with the Italian Fire Department for the L’aquila Earthquake. At the Haiti Earthquake in 2010, the Navy MSDU used underwater ROVs to clear the port so that ships could bring in responders and supplies without running aground or collapsing the piers. The Haitian airspace was under a temporary flight restriction but there was a  small UAV that self-deployed and performed reconnaissance. A small UAV was tried for indoor inspection of the cathedral at the Christchurch earthquake (2011) but the structural specialists shifted to ground robots.  Underwater robots were used extensively by municipalities with some use of the ground robots and small UAVs for structural inspection at the Tohoku earthquake/tsunami in 2011.  Small ground and UAVs were used by the NifTI team with the Italian Fire Department at the Finale Emilia earthquake for structural inspection in 2012. The Chinese military used small UAVs at the 2013 Lushan China earthquake and the 2014 Yunnan China earthquake for rapid reconnaissance of hard to reach areas.

 

 

Researchers make a robot with other bots

Engineers have created a modular spider robot that has snake bots as feet. It could be reconfigured to meet almost any user requirement and could also be useful in search and rescue operations. Carnegie Mellon University’s latest robot is called Snake Monster, however, with six legs, it looks more like an insect than a snake. But it really doesn’t matter what you call it, says its inventor, Howie Choset – the whole point of the project is to make modular robots that can easily be reconfigured to meet a user’s needs.

The Defense Advanced Research Projects Agency sponsored this work through its Maximum Mobility and Manipulation (M3) program, which focuses on ways to design and build robots more rapidly and enhance their ability to manipulate objects and move in natural environments. Snake Monster, as well as some of Choset’s other robots, will be demonstrated at the finals of the DARPA Robotics Challenge in June.

Check out more information at punemirror.in

Russia wants to develop search-and-rescue robots for the Arctic

As Russia focuses on militarizing its Arctic region, the Kremlin is trying to develop military technology needed to operate in one of the world’s harshest environments. Russian military planners are now setting their sights on the development of Arctic rescue robots.

Admiral Victor Chirkov, the head of the Russian Navy, has called for the development and construction of “Arctic underwater search and rescue robots,” Newsweek reports citing Itar-Tass, a state-owned Russian media organization. The robots would be designed to withstand difficult Arctic conditions and cold temperatures.

The robots would be kept aboard Russian icebreakers and other maritime vessels to assist in search-and-rescue missions. They would save human rescuers from having to operate in waters whose temperates average a chilly (and deadly) 28-29 degrees Fahrenheit.

Check out more information at businessinsider.com