All posts by Beau Bondoc

TED talk by CEI Director Murphy: It’s not the robots, it’s the data!

You can also click here to check out the whole video!

Robots, drones and heart-detectors: How disaster technology is saving lives

Robots with cameras, microphones and sensors searched for victims stranded in flooded homes and on rooftops. They assessed damage and sent back images from places rescuers couldn’t get. It was August 31, 2005, two days after Hurricane Katrina hit the Gulf Coast. These robots were a crucial connection between emergency responders and survivors. Ten years later, new technology is changing the way we handle whatever life throws at us. In the case of disaster relief and recovery, this means more effective ways to save lives and begin the arduous process of rebuilding after catastrophe.

“You’ve got a golden 72 hours of the initial response that’s very critical,” said Dr. Robin Murphy,  a robotics professor and director of the Center for Robot-Assisted Search and Rescue (CRASAR) at Texas A&M University and also worked with robots after the September 11, 2001, attacks, in natural disasters such as Hurricane Katrina and at the Fukushima nuclear accident. ”Then you have the restoration of services. After the emergency teams have got everything under control, you got to get your power back on, your sewage, you know, your roads and that.”

UAVs such as the PrecisionHawk Lancaster, a fixed wing drone, are not only able to aide human disaster responders by providing photos of where to look for victims, but they also provide a valuable resource for determining how to approach the relief efforts. ”It acts like a plane. It’s smarter than a plane because it’s got all sorts of onboard electronics to let it do preprogram surveys. It takes pictures like on a satellite or a Mars explorer and then pulls those back together into a hyper-accurate map — a 3-D reconstruction,” Murphy said. Murphy also said it’s not only very accurate, but it’s also easy to pick up and maneuver.

Check out the rest of the article here

Indian Scientists Making Snake Robot for Search and Rescue Missions

Two prototypes of the Snake Robot for Search and Rescue Missions, called SARP (Snake-like Articulated Robot Platform) have been designed by scientists of the department of mechanical and aerospace engineering at Indian Institute of Technology-Hyderabad (IIT-H). Developed from fire-proof ABS plastic, the snake-like motion of the prototypes (about a metre in length) helps in navigation of rough terrain, he said. The robots can also communicate with each other.

“In a disaster site, like a collapsed building in an earthquake, a building on fire, or a dangerous environment, like a nuclear power plant in an accident, a snake robot can be used to access difficult-to-reach spaces and look for survivors under the debris,” R. Prasanth Kumar, associate professor at the department told IANS. ”It can then relay valuable information about the environment and help rescue workers in planning their missions,” Kumar said.

Check out more information here

Researchers to tap mosquitoes’ sense of smell to develop rescue bot

A group of researchers will start development next month of a rescue robot that can detect human scents at disaster sites where people may be trapped under debris or earth and sand. The group will consist of researchers from the University of Tokyo, major chemical company Sumitomo Chemical Co. and the Kanagawa Academy of Science and Technology.

The researchers will draw on mosquitoes’ ability to distinguish the faintest smell of animal or human perspiration to create a small sensor that can be attached to an unmanned drone or other device. They aim to put these robots to practical use by 2020.

Check out more information here

Drone Helps Rescue 2 Boys from Raging River

Two boys needed to be rescued from the raging Little Androscoggin River in Maine after their tube overturned Tuesday. Only one of them was wearing a life jacket. Frank Roma, chief of the Auburn fire department, wanted to get that boy a life jacket before attempting the rescue. The water was rough, and rescuers had a hard time getting to the boys, so they used Roma’s personal drone to deliver a life jacket and a safety line to the boys.

“We wanted to make sure we got a life jacket on that second child so that if they did fall in the water we could catch them downstream,” said Roma. “We used the drone to fly a tag line out to the young man that was on the rock, we instructed him to untie and to pull life jacket over to him.”

Check out more information here

Stop Laughing at Those Clumsy Humanoid Robots

The Humanoid Robot, built like a linebacker with an oversized head, tiptoes on two feet through the dirt. It’s free of any wires. It’s unleashed—but it’s now wavering. They were all part of a competition in Pomona, California put on by Darpa, the far-out research wing of the Pentagon. After the Fukushima disaster in 2011, Darpa set out to encourage the development of robots that can assist in similar catastrophes: machines capable of working where humans dare not go. And so the yearly Darpa Robotics Challenge was born.

To explore something like a contaminated nuclear reactor, a robot would have to conquer not only piles of rubble in the facility, but also be able to open doors and climb stairs and ladders. In a human-designed space, the thinking goes, a humanoid robot would be best equipped to handle the job. And indeed, for all their clumsiness, the semi-autonomous robots (human operators still do much of the controlling in the challenge) passed some impressive tests, including driving an ATV.

The thing is, relief workers have had operational “tracked” robots for 15 years that roll along on tank-like treads. They even helped out in the aftermath of Fukushima, and still run tests there to this day. Bipedal humanoids, on the other hand, have never gotten near an actual disaster. They’re expensive, and you don’t have to be a physicist to notice these robots are top heavy.

So why even bother developing bipeds? Well, when Darpa’s handing out $2 million for first place in its challenge, building a walking robot that drives ATVs must seem like a sweet deal.

Check out more information at

N.C. State team pioneers backpack-wearing cockroaches that can explore disaster areas

Researchers at N.C. State are developing technology that equips cockroaches to enter disaster areas and send back information for search-and-rescue missions. The insects carry backpacks that contain a small microphone and radio transmitter.

These enhanced insects – dubbed biobots or cyborgs – have been developed by Alper Bozkurt, an assistant professor of electrical and computer engineering at N.C. State, and others over the past eight years. Working initially with moths and, later, cockroaches, the scientists equipped the insects to pick up sounds too distant or faint to be heard outside the rubble.

Another facet of the technology allows the insects also to send signals to one another. “It’s a neighbor-to-neighbor interaction that allows someone to build a map,” explained Edgar Lobaton, a robotics engineer and assistant professor in NCSU’s Department of Electrical and Computer Engineering. “These little agents move around and continuously communicate with each other by sending out radio signals. We are learning to take this information, put it in a computer, and create a map of the area.”

Check out more information here!

Researchers make a robot with other bots

Engineers have created a modular spider robot that has snake bots as feet. It could be reconfigured to meet almost any user requirement and could also be useful in search and rescue operations. Carnegie Mellon University’s latest robot is called Snake Monster, however, with six legs, it looks more like an insect than a snake. But it really doesn’t matter what you call it, says its inventor, Howie Choset – the whole point of the project is to make modular robots that can easily be reconfigured to meet a user’s needs.

The Defense Advanced Research Projects Agency sponsored this work through its Maximum Mobility and Manipulation (M3) program, which focuses on ways to design and build robots more rapidly and enhance their ability to manipulate objects and move in natural environments. Snake Monster, as well as some of Choset’s other robots, will be demonstrated at the finals of the DARPA Robotics Challenge in June.

Check out more information at

Russia wants to develop search-and-rescue robots for the Arctic

As Russia focuses on militarizing its Arctic region, the Kremlin is trying to develop military technology needed to operate in one of the world’s harshest environments. Russian military planners are now setting their sights on the development of Arctic rescue robots.

Admiral Victor Chirkov, the head of the Russian Navy, has called for the development and construction of “Arctic underwater search and rescue robots,” Newsweek reports citing Itar-Tass, a state-owned Russian media organization. The robots would be designed to withstand difficult Arctic conditions and cold temperatures.

The robots would be kept aboard Russian icebreakers and other maritime vessels to assist in search-and-rescue missions. They would save human rescuers from having to operate in waters whose temperates average a chilly (and deadly) 28-29 degrees Fahrenheit.

Check out more information at

Pleurobot is salamander-like robot with lifelike motion

A video showing “multimodal locomotion in a bioinspired robot” has been making the rounds, and the video demonstrates advances in robotics as scientific tools as well as potential robots for search and rescue operations. Its name is Pleurobot.

According to the video notes, the Pleurobot is being developed by the BioRob at EPFL and NCCR Robotics. The robot takes it cues from the salamander and the team is making use of cineradiography to advance their work. They recorded three-dimensional X-ray videos of salamanders, walking on ground, walking underwater and swimming. Tracking up to 64 points on the animal’s skeleton, they were able to record three-dimensional movements of bones in great detail. They deduced the number and position of active and passive joints needed for the robot to reproduce the movements with reasonable accuracy in three-dimensions.

Commenting on their work, Evan Ackerman in IEEE Spectrum said, “The key to Pleurobot’s lifelike motion is its design, which was based on 3D x-ray movies of a real salamander walking and swimming.”

Their main goal is understanding the way that the nervous system coordinates movement in vertebrates. “Pleurobot’s design, with 27 degrees of freedom, allows us to test more advanced mathematical models of the locomotor nervous system towards richer motor skills,” they said. The team said Pleurobot may also prove useful in other ways. “Because of its low center of mass and segmented legs it can navigate over rough terrain without losing balance. With a waterproof skin it can also swim. Those features may one day enable Pleurobot to help in search and rescue operations.”

Check out more information at